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Preface

Site characterization investigations were conducted at Jefferson Proving
Ground (JPG), Indiana, by personnel of the Geotechnical Laboratory (GL) and
Environmental Laboratory (EL), U.S. Army Engineer Waterways Experiment
Station (WES), and the U.S. Army Cold Regions Research and Engineering
Laboratory (CRREL). The field data collection phases of the investigation
occurred during August and October through December 1997 and April 1998.
The investigations included measurements and surveys to determine geological,
geophysical, and environmental parameters or properties and their variations with
depth, lateral dimension, and time. The investigations were conducted for the
U.S. Army Environmental Center (AEC), Aberdeen Proving Ground, Maryland,
as part of JPG Unexploded Ordnance (UXO) Technology Demonstration,

Phase IV. AEC Program Managers during this investigation were Ms Kelly
Rigano and Mr. George Robitaille. Drs. Ernesto R. Cespedes, EL, and Dwain K.
Butler, GL, are the WES Principal Investigators.

Report preparation was coordinated at WES by Mr. José L. Llopis with input
from Drs. Dwain K. Butler, Janet E. Simms, Earthquake Engineering and
Geosciences Division (EEGD), GL; Mr. Harold W. West, Natural Resources
Division, and Dr. John O. Curtis, Environmental Engineering Division, EL;

Dr. Paul Wolfe, Wright State University; and Dr. Steven A. Arcone, CRREL.
Geophysical field work was performed by Drs. Simms and Richard Olsen and
Messrs. Llopis and Thomas S. Harmon, EEGD; Dr. Arcone and Messrs. Bert
Yankielun, Allan J.Delany, and Paul V. Sellmann, CRREL; and Dr. Wolfe. Soils
testing and analysis were conducted by the Soil and Rock Mechanics Division,
GL, along with the Environmental and Structures Laboratories, WES.
Geophysical data analysis was conducted by Drs. Butler and Simms and

Mr. Llopis. The work was performed under the direct supervision of

Dr. Mary Ellen Hynes, Chief, Earthquake Engineering and Geophysics Branch,
EEGD, and the general supervision of Drs. A. G. Franklin, Chief, EEGD, and
William F. Marcuson I, Director, GL.

At the time of publication of this report, Director of WES was Dr. Robert W.
Whalin. Commander was COL Robin R. Cababa, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.



Conversion Factors,
Non-S| to Sl Units of
Measurement

Non-SI units of measurement used in this report can be converted to SI units as
follows:

Multiply By __ - To Obtain ]I
acres 2.47105 hectares
I
feet 0.3048 meters
gamma 1.0 nanotesia
miles (U.S. statute) 1.609347 kilometers |
{ millimho per foot 3.28 millisiemen per meter II
e
pounds (mass) 0.4535924 kilograms “
pounds per cubic feet 0.016018 grams per cubic centimeter
1t tons per square foot 95.76052 _ kilopascals

vii



1 Introduction

Background Information

Location of buried landmines and unexploded ordnance (UXO) requires the
application of surface geophysical techniques and/or very low-level airborne
geophysical techniques to detect anomalies or signatures of the objects against a
background. The geophysical techniques include magnetic methods,
electromagnetic (EM) induction methods, ground penetrating radar (GPR) methods
(wave propagation electromagnetic methods), microgravity methods, and various
multi-spectral and infrared (IR) remote imaging methods. Since each of the
detection methods listed respond to contrasts or changes or variations of physical
properties or features, a multitude of geophysical sensor responses are a result of
site characteristics. Site characteristics which produce sensor responses are called
the background. The background is both site and time dependent and includes the
effects of site geology, site physiography, vegetation, climatic variables, and any
surface and buried cultural debris or engineered structures. Many times, much of
the surface and buried cultural debris will be the metallic remains of ordnance that
has performed successfully (i.., detonated as designed). The background at a site
may be such that the geophysical signatures of landmines and UXO cannot be
discriminated or detected against the background signature complex. Also,
particular features of the background may produce signatures that are interpreted as
caused by landmines or UXO, thus producing false alarms. For example, buried
metallic debris can produce magnetic and electromagnetic signatures that look
similar to the signatures of UXO. Also, buried metallic debris, tree roots, and large
cobbles can produce GPR signatures that look similar to UXO.

In 1993, Congress mandated that the U.S. Army conduct a program at Jefferson
Proving Ground (JPG), Indiana, to demonstrate and evaluate systems and
technologies that can be used to detect, identify, and remediate buried UXO. The
U.S. Army Environmental Center, Aberdeen, MD, was designated as the program
manager. AEC tasked the Naval Explosive Ordnance Technology Division
(NAVEODTECHDIV), Indian Head, MD, with the technical lead. Two controlled
test sites (40- and 80-acres) were created by emplacing inert ordnance and debris at
documented but unpublished locations. The first phase of the program was
completed in October 1994. This phase included demonstrations of 29 systems.
The data collected from Phase I was compared to the known (baseline) target data,
and a technical report was published (USAEC 1994, 1995). From May through
September 1995, Phase II of the program was conducted in a similar manner as
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Phase I, and 17 additional systems were demonstrated. Data collected from Phase II
was again compared to the baseline targets, and a technical report was published
(USAEC 1996).

AEC conducted a Phase III program during September through November
1996. It was conducted in a similar manner as Phases I and II, but the overall
program goals and objectives were expanded. In Phase III, the 2 test sites were
subdivided to encompass realistic UXO scenarios. The main objective was to
assess system performance in the various UXO scenarios. The site layout the 40-
and 80-acre sites included the following scenarios:

Scenario 1 Aerial Gunnery Range

An aerial gunnery ranxfe results from both helicopter and fixed
wing aircraft aenial de iveng' of ordnance, ranging in size from 2.75-
in rockets to 2000-1b bombs, and found at depths ranging from
near surface to 3 m.

Scenario 2 Artillery and Mortar Range

A typical artillery and mortar range contains assorted types of
conventional ground ordnance fired at fixed hardened targets,
usually from a position outside the range; ordnance typically ranges
in size from 60-mm mortars to 8-in projectiles and is found at
depths ranging from near surface to 1.2 m.

Scenario 3 Grenades and Submunitions Range

The grenades and submunitions range represents a portion of a

conventional impact area that has been set aside for sensitive-fuzed

submunitions firing. These submunitions are delivered by aircraft

and field artillery. The purpose of Phase III demonstrations was to

gestect only submunitions and grenades at depths shallower that
Sm.

Scenario 4 Interrogation and Burial Area

The interrogation area represents a conventional impact area. At
this area, demonstrators were given target location and required to
classify and precisely position targets. The target type, size,
orientation, and depth of ordnance were not provided. The targets
used in this area were aerial wcaﬁon systems ran%ing from 2.75-in
rockets to 2000-Ib bombs as well as conventional ground weapons
ranging from 60-mm mortars to 8-in projectiles. Burn or burial
sites may be present in this impact area as well as fragments from
exploded munitions and other ordnance components, such as
mortar fins and empty illumination rounds. Ordnance was buried
at depths ranging from near surface to 2 m.

Results of the Phase IIl program were published in April 1997 (USAEC 1997).

For UXO remediation/cleanup based on geophysical surveys for UXO detection
and location, the current levels of false alarms are a major limiting factor (effort and
cost). Recent Technology Demonstrations (TDs) at JPG illustrated the problems
caused by the site background and associated false alarms in degrading the
capability for landmine and UXO detection (Altshuler et al. 1995; Sparrow et al.
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1995). In JPG Phase I (Sparrow et al. 1995), only one demonstrator had an
ordnance detection ratio in excess of 60 percent. The best performance in terms of
ordnance detection ratio in Phase II was 85 percent, but that demonstrator had 4.7
false alarms per ordnance item detected. Much of the improved performance from
Phase I to Phase II can be attributed to repeat demonstrators” improved knowledge
of site conditions and generally improved navigation (positioning) capability.
Magnetic and electromagnetic induction systems were the most successful at JPG.
GPR systems performed extremely poorly at JPG, both in terms of poor ordnance
detection and high false alarm rates. Airborne systems were totally ineffective at
JPG for both Phases I and II, with ordnance detection results statistically
indistinguishable from random location (Altshuler et al. 1995).

JPG is located approximately 5 miles north of Madison, Indiana, in the
southeastern portion of the state (Figure 1). JPG is approximately 19 miles long
and 3 to 6 miles in width and lies within Jefferson, Ripley, and Jennings Counties
(Figure 2). The 40-acre test site is located in the northwest quarter of Section 36,
Township 6 North, Range 10 East. The 80-acre site is located at the center of
Section 14, Township 5 North, Range 10 East. Both areas are located near the
north-south perimeter road on the eastern side of JPG.

An additional 1-hectare (approximately 2.5 acres) site was established
approximately 150 ft north of the 40-acre site. This site was set-up to complement
four sites established as part of the Defense Advanced Research Program Agency’s
(DARPA) Backgrounds Characterization Program (Simms et al. 1997). The
purpose of the DARPA Program is to collect background and clutter data in a
variety of geologic and geographic conditions. A simple site classification scheme,
that used sand and clay as generic particle size and soil type classifiers and moist
and dry as soil moisture and climatic classifiers, was used to locate potential test
sites. The DARPA 1-hectare sites are located at Fort Carson, CO, and Fort A.P.
Hill, VA. Figure 3 shows how each DARPA test site location fits a simple soil
particle size and moisture regime classification scheme.

The JPG 1-hectare site is shown as completing the simple site classification
matrix, as a moist clay site. This initial classification, based on published soil
classifications and documented poor GPR performance, is shown to be somewhat
erroneous, as a result of site characterization work documented in this report.

Scope of Report

The purpose of this report is to present archival documentation of geological,
geophysical, environmental, and geotechnical site characterization of the JPG UXO
Technology Demonstration Sites. This documentation supports:

a. Phase IV demonstrator planning and results assessment,

b. Additional assessments of Phase I-III

¢. Future use of JPG sites,

d. Comparisons of the JPG sites with other UXO and landmine test sites
and cleanup sites.

Chapter 1 Introduction
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Chapter 2 of this report describes the general geology of the JPG tests sites
including soils and bedrock descriptions. A summary of 1993 geotechnical,
environmental, and geophysical testing results conducted at the test sites is
presented in Chapter 3. Chapter 4 describes the soil sampling and testing plan, and
also geophysical survey concepts and field procedures employed at the test sites to
supplement the 1993 site characterization information. Chapters 5 presents the
results of the soils investigation whereas, Chapter 6 presents the results and

interpretation of the geophysical surveys.

SAND FORT A.P. HILL, VA

FORT CARSON, CO

(Firing Points 20 and 21) | (Turkey Creek Site)
CLAY JEFFERSON PROVING | FORT CARSON, CO
GROUND, IN (Seabee Site)
MOIST DRY

Figure 3. Simplified soil particle size and moisture regime classification for

DARPA 1-hectare sites
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2 Geology

Physiographic Setting

JPG is located in the Muscatatuck Regional Slope physiographic unit of
southeastern Indiana. The development of modern surface features have been
controlled by normal degradational processes such as weathering, stream erosion,
entrenchment, and mass movement (Schneider 1966). This physiographic unit lies
within the Glaciated Outer Bluegrass section of the interior Low Plateau Province
(Fenneman 1938 and Ray 1974). Although a northern portion of the Muscatatuck
Regional Slope was glaciated during the Wisconsinan Age, the entire unit was
covered by glacial ice in the early Pleistocene Epoch. Stream valleys cut into the
upper portions of underlying limestones and dolomites. Upland areas between
drainages are typically broad and nearly flat to undulating, indicating that the region
is still in a youthful state of landform development (Schneider 1966).

General Site Description
40-acre site

The 40-acre site is a grassy field with scattered trees and measures 1320 ft by
1320 ft. A topographic map, based on a local datum, is shown in Figure 4. The
topographic map is based on elevations taken at 202 grid points. The topographic
map shows a broad plain gently dipping to the southwest. An east-west trending
gully is seen in the northern portion of the site. Figure 5 shows the X-Y locations
and elevations of three benchmarks established at the 40-acre site.

80-acre site

The 80-acre site, also a grassy field with scattered trees, measures 2600 ft by
1400 ft. The long axis of the site is oriented approximately north-south. A
topographic map, based on a local datum, shows that the site dips gently to the east
and exhibits a depression along the southern perimeter (Figure 6). The topographic
map is based on elevations taken at 202 grid points. The locations of four
benchmarks showing their X-Y positions and elevations is presented in Figure 7.

Chapter 2 Geology
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1-hectare site

The 1-hectare UXO backgrounds characterization test site, as previously
mentioned, is located approximately 150 ft north of the northern boundary of the
40-acre site (Figure 8). The test site is 125 m long in the east-west direction and
100 m long in the north-south direction. The topographic map of the site (Figure 9)
reveals a relatively flat (less than 2 percent slope) surface. The site has a dip of
approximately 1.5 percent to the northwest. The site is covered chiefly with grass
and also with a few small shrubs.

Soils Description
40-acre site

The soils within the 40-acre site are mapped by McWilliams (1985) as
Avonburg, Cincinnati, Cobbsfork, and Rossmoyne silt loam soils (Figure 10).
General characteristics of each soil are discussed below.

AvA—Avonburg silt loam, 0 to 2 percent slopes. The Avonburg soils occur
on uplands of glacial drift plains and have either gently sloping or nearly level
topographic features. Drainage is poor, as Avonburg soils have low permeability.
The soils were formed from a thin mantle of loess and underlying glacial drift.
Avonburg soils have a dark grayish brown color within the upper 10 inches.
Avonburg subsoils are friable and mottled. The upper subsoil horizon generally
consists of a yellowish brown silt loam and light brownish gray friable silt loam
about 17 inches thick. The lower part to a depth of 80 inches is a fragipan generally
mottled, light brownish gray in color, firm and very firm silty clay loam and silt
loam.

CcC3—Cincinnati silt loam, 6 to 12 percent slopes, severely eroded. The
Cincinnati silt loam soils are formed on 6 to 12 percent slopes. They are deep, well
drained soil found on the side slopes in uplands. The surface layer is yellowish
brown silt loam about 7 inches thick. The upper horizon of the subsurface is light
yellowish brown, mottled, friable silt loam about 3 inches thick. The middle horizon
consists of a mottled yellowish brown and gray, firm silty clay loam fragipan. This
horizon extends to approximately 29 inches. The horizon below the fragipan
extends to a depth of about 80 inches. It is, in sequence downward, yellowish
brown, mottled firm silty clay loam; mottled light olive gray and yellowish brown,
firm clay; and dark yellowish brown, mottled, firm clay. In places, the fragipan
occurs at the surface.

Cm—Cobbsfork silt loam. The Cobbsfork soils are formed from loess and
silty glacial drift found on uplands. Cobbsfork soil is deep and poorly drained and
has low permeability (0.06 to 0.2 in/hr). This soil is subject to ponding. The
Cobbsfork soil has a 10-inch surface layer consisting of a silt loam that is dark
grayish-brown. Generally 80 inches of subsoil is found with the Cobbsfork soil of
which the upper horizon is a friable and firm mottled light gray silt loam. The
middle horizon is gray and light-gray, mottled, firm silty clay loam. The deepest
horizon consists of a yellowish brown and dark yellowish brown, mottled, very firm
silt loam.

Chapter 2 Geology
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RoB2—Rossmoyne silt loam, 2 to 6 percent slopes, eroded. The
Rossmoyne silt loam forms on 2 to 6 percent slopes. It is deep, moderately well
drained soil found on uplands. It appears on the northwest portion of the 40-acre
site, encompassing about one-third of the parcel. Permeability is low in this soil and
a perched seasonal high water table is at a depth of 1.5 t0 3.0 ft in winter and early
spring. A 9-inch thick brown silt loam makes up the surface layer. The subsurface
of the Rossmoyne soil extends to a depth of 28 inches and consists of a light
brownish yellow, friable silt loam in the upper horizon and a friable, mottled,
yellowish brown, silt loam in the lower horizon. Below this horizon to a depth of
about 80 inches is a fragipan that is light gray, mottled, very firm silt loam and silty
clay loam.

80-acre site

The soils found at the 80-acre site, according to Nickell (1985), are the
Avonburg, Cincinnati, Cobbsfork, Rossmoyne, and Ryker silt loams and are shown
in Figure 11. The Avonburg soil at the 80-acre site is the same as described for the
40-acre site.

CnB2—Cincinnati silt loam, 2-6 percent slopes, eroded. The Cincinnati
eroded silt loam formed on 2 to 6 percent slopes. This soil is formed from loess and
underlying glacial drift. Cincinnati soils appear on summits, shoulder slopes, and in
uplands. Cincinnati Soils are well drained and deep; however, its permeability is
low. The Cincinnati surface layer is 6 inches deep with a mixture of yellowish and
dark brown silt loams. The subsoil extends to a depth of 80 inches and may be
underlain with interbedded limestone, calcareous shale, or black shale bedrock. The
upper subsoil horizon is mottled yellowish-brown, firm clay loam. The middle
horizon is a mottled yellowish-brown very firm clay loam fragipan. The lower
horizon of the subsoil is firm clay loam. A seasonal high perched water table is
found in the Cincinnati soil.

CO—Cobbsfork silt loam. The Cobbsfork soils are poorly drained, have a
seasonal high water table and are subject to ponding. In a typical profile the surface
layer is grayish brown silt loam about 6 inches thick. The subsurface layer is also
about 6 inches of grayish brown silt loam. The subsoil extends to a depth of about
80 inches. It is, in sequence downward, light gray and light brownish gray, mottled
silt loam; light brownish gray and yellowish brown, mottled, firm and brittle silt
loam; and strong brown, firm clay loam.

RoA—Rossmoyne silt loam, 0 to 2 percent slopes. This soil is formed from
a thin layer of loess and underlain by glacial drift. The Rossmoyne is well drained
in places, nearly level, deep and appears on narrow summits in the uplands. A
perched seasonal high water table is at a depth of 1.5t0 3.0 feet in winter and
spring. A dark brown silt loam 7 inches thick is typical of the Rossmoyne surface
layer. Generally, 80 inches of subsoil is found with Rossmoyne soil. The subsoil is
ayellowish brown. It is, in sequence downward, friable silt loam; mottled, friable
silt loam; a mottled, very firm silt loam, loam, and clay loam fragipan; and mottled,
firm clay loam. The Rossmoyne soil only exists on narrow strips at the northeast
and southeast corners of the 80-acre site.
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RyC3—Ryker silt loam, 6 to 12 percent slopes, severely eroded. This
moderately sloping, deep, well drained soil is on summits, shoulder slopes, and back
slopes in uplands. Permeability is moderate (0.6 to 2.0 in/hr) in the Ryker soil. The
surface layer is about 7 inches thick consisting of yellowish red silt loam mixed with
a small amount of dark brown silt loam. The subsoil extends to about 80 inches in
depth. The upper part is yellowish red, firm silty clay loam, and the lower part is
yellowish red clay loam.

1-hectare site

The soils mapped by McWilliams (1985) at the 1-hectare site, are the Avonburg
and Rossmoyne silt loam soils (Figure 12). The Avonburg (AvA) and Rossmoyne
(RoB2) soils found at the 1-hectare site are the same as described for the 40-acre
site.

Bedrock Description

The bedrock beneath the 40- and 80-acre and 1-hectare sites is Laurel Dolomite.
The Silurian aged Laurel Dolomite, approximately 45 ft thick, caps the uplands
throughout much of the area. The Laurel Dolomite is described as gray, cherty,
dolomitic limestone (Nickell 1985). The residuum of this dolomite is rich in chert
nodules, which are abundant in the subsoils that formed on this bedrock.

Underlying the Laurel Dolomite are 300 to 400 feet of interbedded shales and
limestone of the Silurian and Ordovician age.

Chapter 2 Geology
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3 Summary of Original Site
Characterization Efforts

In 1993 NAVEODTECHDIV tasked Tetra Tech, Inc. (formerly PRC
Environmental Management, Inc.) to conduct a geotechnical investigation and to
collect environmental samples from the 40- and 80-acre sites. Also, as part of the
field investigation Tetra Tech conducted limited geophysical testing. The data was
gathered to (1) determine if the 2 sites were appropriate for demonstrations, (2) to
help Tetra Tech and JPG personnel decide where to emplace UXO items, and (3) to
help technology developers calibrate their equipment prior to the demonstrations.
The results of these investigations along with soil descriptions of the 40- and 80-
acre sites were provided to technology demonstrators.

Prior to any testing at the sites a topographic survey was conducted to establish
vertical control and to locate grid nodes. Grid nodes were established on 100-ft by
100-ft square pattern and each node marked with 2-in by 2-in stakes. Permanent
vertical control points were installed at the 40- and 80-acre sites for future
reference.

Geotechnical Investigation

The geotechnical investigation conducted by Tetra Tech consisted of
determining soil thickness and collecting soil and water samples for physical and
chemical analysis.

Soil thickness

Soil thickness at the 40- and 80-acre sites was determined by using a hydraulic
Geoprobe® to push molybdenum steel rods into the soil at selected grid nodes until
refusal was observed. Refusal is defined as a penetration rate less than 2.5 cm/min,
while operating the geoprobe on high power (Tetra Tech EM, Inc 1998).

Tetra Tech probed the soil at 202 nodes at the 40-acre site. Refusal depths
ranged from 3.5 to 23.8 ft below ground surface (bgs) with an average refusal depth
of 12.8 ft bgs. Figure 13 shows the top of rock elevation, based on a local datum,
while Figure 14 shows the depth to bedrock for the 40-acre site. Tetra Tech also

Chapter 3 Summary of Original Site Characterization Efforts
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probed 202 locations at the 80-acre site and had refusal depths ranging between 2.8
and 23.7 ft with an average depth of refusal of 10.3 ft bgs. The top of rock
elevation, referenced to a local datum, and depth to bedrock for the 80-acre site are
presented in Figures 15 and 16, respectively. At each site, depth and rate of
penetration was fairly uniform and predictable. At some locations, penetration was
not as deep as expected, probably because of the presence of scattered large rocks in
the subsurface above the bedrock surface (Tetra Tech EM, Inc 1998).

Soil sampling

Twenty soil samples were collected at the test sites for geotechnical
characterization. Borings were placed at three locations at the 40-acre site and at
five locations at the 80-acre site. The following laboratory tests were run on the
samples:

Grain size

Moisture content
Hydraulic conductivity
Swell test

Natural density

The grain size analysis of the 20 samples indicated that 80 to 90 percent of the
soil matrix is in the silt- or clay-size fraction. The soil moisture content of the 20
soil samples, in general, ranged between 20 to 25 percent. The unit dry weight of
the 20 soil samples ranged from 90 to 111 pounds per cubic foot (pcf) (1.44 to
1.78 g/cm?®). The lone exception was a sample collected at B-26 (80-acre site)
which was measured as 74 pcf (1.18 g/cm®). This sample also exhibited the highest
moisture content (45 percent) of all the samples. Eleven samples were tested for
swell pressure and free swell. Swell pressure ranged between 0.03 and 1.00 tons per
square foot (2.87 and 95.76 kilopascals) whereas free swell ranged from 0.3 to 3.46
percent. Typical free swell values generally were less than 1 percent. Triaxial
permeability tests run on eight samples showed a permeability range of 1 x 10% to
1 x 10°® cr/sec with an average value of 1 x 107 cm/sec. Boring logs and test data
sheets for the above soil analysis are given in PRC Environmental Management, Inc.
(19%4a.)

Environmental Sampling.

Environmental samples were collected at the 40- and 80-acre sites to assess the
presence of volatile organic compounds (VOCs), semivolatile organic compounds
(SVOCs), metals, and explosives. Three soil and one groundwater sample was
collected at each site. The sampling was conducted to assess the potential risks to
workers during the demonstrations and during the placement of UXOs.

The analytical results from the groundwater and soil samples indicated that
VOCs, SVOCs, metal, and explosives contamination had no impact on the test sites.
It was concluded that no environmental hazards existed at the sites. A description
of sampling and testing procedures and laboratory analysis reports are given in PRC
Environmental Management, Inc. (1994a).
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Geophysical Testing

A total magnetic field, electrical resistivity, and GPR survey were conducted at
the test sites to establish baseline geophysical parameters. The geophysical survey
results are provided in PRC Environmental Management, Inc. (1994b). Even
though the report describes the GPR technique and equipment used, no data is
presented.

Magnetic surveys

Total magnetic ficld readings were collected at 100-ft intervals both in the east-
west and north-south directions at the demonstration sites. The 40-acre site results
show numerous anomalies along the length of the western edge of the site and they
are attributed to the presence of a barbed wire fence. Anomalously low readings are
also noted approximately 150 ft on either side of a north-south trending line located
500 ft from the eastern edge of the site. The cause of this linear anomaly is
unknown and it is presumed to be caused by a geologic feature. The range of
magnetic readings, with the exception of the anomalous values caused by the fence,
ranged between 54,510 and 54,622 nanoTeslas (nT).

The 80-acre site was also surveyed on a 100 ft by 100 ft grid layout. Anomalies
were detected along the length of the eastern edge of the site. These anomalies are
caused by the north-south trending asphalt perimeter road located within 50 ft of the
site and which runs along the site’s entire eastern boundary. A localized anomalous
area was also noted in the southwestern corner of the site which was caused by
nearby metal racks. The rest of the site was reported to have fairly uniform
magnetic readings ranging between 54,615 to 54,630 nT.

Electrical resistivity surveys

Vertical electrical resistivity surveys were conducted at three locations at the
40-acre site and at four locations at the 80-acre site. A Wenner array was used to
conduct the soundings. A-spacings of 0.91, 1.52, 2.13, and 30.48 m were used for
the surveys. One location at the 40-acre site had A-spacings of 0.91, 1.52, and
2.13 m. However, there were not enough data points collected at any of the survey
locations to adequately determine layer thicknesses or corresponding layer
resistivities of the underlying materials. It was reported that apparent resistivities
generally decreased with depth and was probably caused by an increase in moisture
and or clay content. It was also reported that several soundings indicated increasing
resistivity with depth probably caused by the underlying bedrock.

Chapter 3 Summary of Original Site Characterization Efforts



4 Supplemental Site
Characterization

Preliminary Activities
Gridding the 40- and 80-acre sites

Wooden stakes, planted 100 feet apart, were used to mark the perimeter and the
grid nodes of the 40 and 80-acre sites. The approximately 4-ft high stakes aided in
survey location and navigation. The grid nodes are designated with a letter followed
by a number for example, A1. The “A” indicates the node is on north-south
trending line “A” and the “1" indicates that the node is on east-west trending line 1.
The north-south trending lines are designated with a letter and increase in
alphabetical order from east to west whereas the east-west trending lines are
designated with numbers that increase in value from north to south. Therefore, for
the 40-acre site the northeast corner is designated as A1 and the other 3 comners are
Al5, 015, and O1 moving in a clockwise manner. Similarly, the four corners for
the 80-acre site are designated, from the northeast corner and proceeding in a
clockwise fashion, A-1, A-26, 0-26, and O1.

A local Cartesian coordinate system was established for geophysical surveying
at the 40- and 80-acre sites. The origin of the 40-acre site (OE,0N) is located at grid
node A14 near the southeast corner. The northwest corner, grid node O1, has
coordinates of (-1320E,1320N). The origin of the 80-acre site has coordinates of
(OE,ON) at grid node A26 and coordinates of (-1400E,2500N) at the northwest grid
node, O1.

Selection of the 1-hectare site

The 1-hectare test site was established using the same guidelines as those
mandated for the 1-hectare UXO backgrounds characterization sites established at
Fort Carson, CO, and Fort A. P. Hill, VA (Simms et al. 1997). A local Cartesian
coordinate system was also established for this site. The origin is located at the
southwest corner and is designated (OE,0N) and the northwest corner is designated
(125E,100N). Three 125-m east-west trending lines located along line ON (southern
boundary), 55N, and 100N (northern boundary) were marked with plastic
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flags at 2-m intervals. Flags were also planted every 10 m along 100-m long north-
south trending lines. The north-south lines were laid-out every 20 m between line
OE and 120E.

Soil Sampling and Testing Plan
40- and 80-acre sites
Soil samples were collected on August 3, 1997 at 9 locations at the 40-acre site

and at 5 locations at the 80-acre site. The sampling locations are shown in Table 1
and in Figures 17 and 18.

Table 1

Soil Sampling Locations, 40- and 80-acre Sites

Site Soil Sampling Locations

40-acre C1,67,C13,61,G7,G13 K1 ,K7,K13
80-acre A13,H1,H13,H26,013

Soil samples were collected at depths of 10, 50, and 100 cm at each location with
the exception of locations K1 and K7, 40-acre site, where no samples were collected
at the 100 cm depth. A hand-held power auger was used to advance the hole to the
sampling depth and a hand auger used to collect the sample. The samples were
placed in double, sealed, plastic bags. The samples were stored in ice chests in a
humid room to minimize desiccation. Visual classification, moisture content, and
complex dielectric properties were determined for each sample in the laboratory. In
addition, grain-size gradation, Atterberg limits, specific gravity, organic content,
and classification based on the Unified Soil Classification System (USCS)
(USAEWES 1982) were determined for eleven soil samples collected from locations
C7, G7, and K7 at the 40-acre site and from location A13 at the 80-acre site.
Qualitative X-ray diffraction (XRD) tests to determine the mineralogy and estimate
the quantity of each mineral present were also run on the eleven samples.

1-hectare site

Soil samples were collected at the 1-hectare site in October, 1997. A total of 15
samples were collected from seven locations as shown in Figure 19. The
coordinates of the sampling locations are as follow; (27.5E, 73N), (65E, 10.5N),
(122E, 8N), (123E, 97N), (40E, 23N), (52.5E, 85.5N) and (77.5E, 60.5N).
Sampling depths ranged from 0 to 1 m. Visual classification, moisture content,
grain-size gradation, and Atterberg limits, were determined for each sample.

Chapter 4 Supplemental Site Characterization
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Geophysical Test Principles, Equipment,
and Field Procedures

This section details the site characterization plan, concepts of the geophysical
methods, and field procedures. Electrical resistivity, EM induction, and GPR were
the geophysical methods chosen to supplement the original geophysical surveys
mentioned in Chapter 3. The electrical resistivity and EM techniques are
complimentary and provide 1) both detailed and larger scale subsurface stratigraphy
and 2) electrical resistivity and conductivity of the soil. GPR is used to determine
the depth and attitude of subsurface stratigraphy, detection of anomalies and to
characterize the electromagnetic properties of soils.

40- and 80-acre sites

Test principles and equipment

Electrical resistivity soundings. Electrical resistivity is a measure of how well
the soil conducts an electrical current. Resistivity values can vary over several
orders of magnitude depending on the type of earth material and on the degree of
compaction. Major factors influencing the resistivity measurement are the amount
of pore fluid present, the salinity of the pore fluid, and the presence of conductive
minerals. An increase in any of these factors will cause the resistivity to decrease.
A linear array of four metal rods or electrodes is generally used in an electrical
resistivity survey. The array consists of two outer current electrodes and two inner
potential electrodes. Current is introduced into the ground through one current
electrode (positive electrode) and flows through the subsurface to the other current
electrode (negative electrode). The subsurface material acts as a natural resistor and
a potential difference is generated across the two potential electrodes. Knowing the
amount of current injected into the ground, the electrode separation, and the
potential difference, an apparent resistivity can be computed.

There are two types of resistivity surveys, horizontal profiling and vertical
electrical sounding (VES). The profiling technique is used to identify lateral
variations for a given depth of investigation, whereas the VES method gives
variations in resistivity as a function of depth at a particular surface location. The
VES method employing a Schlumberger array was used in this study. When
performing a VES, the potential (center) electrodes remains fixed and electrical
resistance measurements are taken at increasing current (outer) electrode spacings;
the greater the current electrode spacing, the greater the depth of investigation. The
VES data represent the subsurface resistivity structure below the center point of the
array. A general rule of thumb is that the depth of investigation is equal to 0.2-0.5
the spacing between current electrodes, depending on the actual values of the
material resistivities. The measured resistance reading is multiplied by a factor,
based on the array geometry, to obtain an apparent resistivity value. A VES curve is
obtained by plotting apparent resistivity versus electrode spacing (typically log-
axes). The resistivity, thickness, and number of subsurface layers can be estimated
from the shape of the VES curve. The unit of electrical resistivity is the ohm-meter
(Q-m). Resistivity is the reciprocal of electrical conductivity, which can be
measured in an electromagnetic survey. To convert from resistivity, in ohm-meters,
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to conductivity, in millisiemen per meter, divide 1000 by the resistivity value. An
Atlas Copco ABEM Terrameter SAS 300B and a STING resistivity meter were
used at the 40- and 80-acre sites, respectively. An inverse modeling computer
program, RESIX Plus (Interpex Ltd. 1988), was used to interpret the VES data in
terms of a layered earth model.

Electromagnetic surveys. A frequency domain EM induction method is
commonly used to measure an apparent terrain conductivity. The conductivity of a
material is dependent on the degree of water saturation, the types of ions in solution,
porosity, the chemical constituents of the soil, and the physical nature of the soil.
Because of these factors, conductivity values can range over several orders of
magnitude.

The EM system consists of a transmitter and receiver coil separated by a fixed
distance. An alternating current, commonly in the 1 to 20 kilohertz range, is passed
through the transmitter coil, thus generating a primary time varying magnetic field.
This primary field induces eddy currents in subsurface conductive materials. The
induced eddy currents are the source of a secondary magnetic field which is detected
by the receiver coil along with the primary field. Under a fairly wide range of
conditions, the measured component that is ninety degrees out of phase (quadrature
component) with the primary field is linearly related to the terrain conductivity
(Keller and Frischknecht 1982, Dobrin 1960, Telford et al. 1976). Conductivity is
measured in units of millisiemen per meter (mS/m).

Two components of the induced magnetic ficld are measured by the EM system.
The first is the quadrature phase component, sometimes referred to as the out-of-
phase or imaginary component. An apparent ground terrain conductivity is
determined from the quadrature component. Disturbances in the subsurface caused
by compaction, soil removal and fill activities, or buried objects may produce
conductivity readings different from that of the background values, thus indicating
anomalous areas. The second component is the inphase or real component. The
inphase component is primarily used for calibration purposes, however, it is also
very sensitive to metallic objects and therefore useful when looking for buried metal
(Geonics Ltd. 1984). The inphase component is measured relative to an arbitrarily
set level and assigned units of parts per thousand (ppt).

A Geonics EM31 terrain conductivity meter was used for this investigation.
The EM31 has a transmitter-receiver coil separation of 12 ft (3.7 m) and an
effective depth of investigation of approximately 20 ft (6.1 m) (Geonics Ltd. 1984).
The EM31 meter reading is a volume weighted average of the earth's conductivity;
half of the instrument's readings result from features shallower than about 9 ft
(2.7 m), and the remaining half from below that depth (Bevan 1983). When the
EM31 is carried at a height of approximately 3 ft (0.9 m), it is most sensitive to fea-
tures at a depth of about 1 ft (0.3 m). Carrying the instrument about 3 ft (0.9 m)
above the ground surface reduces the meter reading by 12 percent, however, the
instrument has been calibrated to read correctly when carried at this height (Geonics
Ltd. 1984). The instrument can be operated in both a horizontal and vertical dipole
orientation, each having different depths of investigation. The instrument is
normally operated with the dipoles vertically oriented (coils oriented horizontally
and co-planar) which gives the maximum depth of penetration.
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Ground penetrating radar surveys. The radar detectability of a subsurface
target strongly depends on the EM wave speed, v, and attenuation rate, S, of the
soil. The speed determines the shape of the antenna beam pattern, and 4 determines
how far the waves can penetrate and return to the surface with enough intensity to
be detected. These quantities are related to the relative complex permittivity of soil,
€*, such that

v=c/Real (%), 1)
and
/XdB/m) = 20log [exp(-iw/ ¢(Imag(€*'?)))] 2

where i = (-1)'?, wis frequency in radians/s, and ¢ = 3 X 10® m/s is the wave speed
in free space. The quantity €,* is determined by the Debye relaxation permittivity
(Debye 1929), €,,, and a contribution from the very-low-frequency soil
conductivity, o (Siemans/m, or S/m) such that

€s* =€ - iog/ we,, (3)
where
€ = € + (est - eoo) / (l + Iﬂf;ﬂ)’ (4)

& is the dielectric permittivity of free space (a constant), €, is the low frequency,
“static,” value of the relative soil permittivity, €, is the very-high-frequency value,
J=2nwis the wave frequency in Hertz (Hz), or frequency component for a radar
wavelet, and f,,, is the soil relaxation frequency. The quantity €, determines the
dipole moment density induced in a material by a passing wave. The quantity £, is
a characteristic frequency above which the induced dipoles no longer stay in phase
with the incident wave. These dipoles then generate interference which effectively
slows and attenuates the incident radiation. This process is dispersive, which means
that different frequencies within the incident wavelets propagate at different speeds
and attenuation (Stratton 1941, Brillouin1960, and Feynman et al. 1964).

Values of €, are directly related to the water content for clay-(non-mineralogic)
and silt-sized materials (Topp et al. 1980) and generally equal €* for f< 600 MHz.
Above about 600 MHz laboratory investigations (Hoekstra and Doyle 1971;
Hoekstra and Delaney 1974) show that the adsorbed water on the particle surfaces
of the silt-clay fraction (Tice et al. 1982) strongly influences the dielectric
properties. The adsorption process lowers both the very high dielectric constant
(81) of the normally free water, and the free water relaxation frequency (22 GHz) to
about 1-3 GHz. Values of €,, are generally related to the dry soil density, range
from about 2.5-3.5, and equal €* at frequencies above about 100,000 MHz. For
JPG soils and the radar frequencies used, ois large enough to also influence
attenuation.

The resulting values of €* for silty and clay-rich soils at frequencies above
about 100 MHz provide high values of £ and wave speeds lower than would be
expected for sandy soils with the same volumetric water content. The B values (a
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quantitative discussion is given later) increase as f approaches, and then exceeds, £,
and are orders of magnitude greater than attenuation rates caused by the geometric
spreading of the radiation energy. At frequencies below about 1000 MHz, the real
part, €= €, often referred to as the dielectric constant, determines the wave speed v
through the relation

v=c/ e )

for a variety of frozen and unfrozen silts and (non-mineralogic) clay-sized materials
(Hoekstra and Delaney 1974; Topp et al. 1980; Delaney and Arcone 1984).

A GSSI (Geophysical Survey Systems, Inc.) SIR system model 2 and models
3207 (100 MHz), 5103 (300 MHz), and 101C (600 MHz) antenna transducers were
used in this study. The control unit was used to set the time range (in nanoseconds,
ns) for the echo traces, the data acquisition rate (48 or 64 traces/s), the sampling
density (512 samples per trace), trace sample density (16-bit) and time variable gain
(TVG) across the traces. The settings were calibrated with the antennas set over
emplaced targets. The resulting reflections required a large amount of gain, ranging
up to 65 dB, at time ranges of only 50 (300 MHz) and 30 ns (600 MHz). The short
time ranges were sufficient to capture target responses throughout the site, but were
also necessary to limit radiowave interference which beat with the radar returns at
the high-gain time ranges. The high gain had the negative effect of amplifying small
antenna impedance mismatches and low amplitude clutter (unwanted events), which
probably originated from radiation which leaked on to the antenna housing and
cables. These events usually arrive at constant time delay and are usually alleviated
with a horizontal “background removal” filter. However, in this case where short
time ranges were used, electronic jitter and erratic movement of the antenna may
have caused these events to arrive at variable amplitude and so they were not
consistently reduced by filtering.

The antennas are resistively loaded dipoles. The smaller, 300- and 600-MHz
antennas are shielded with semi-cylindrical housings to alleviate above-surface
clutter. These frequencies are “local” (also known as “instantaneous™) values,
which correspond with the dominant periods and lie approximately at the center of
the received wavelet spectrum. They are considerably below manufacturer’s
specifications for these antennas (400 and 900 MHz, respectively), which generally
apply to operation in air, or on ground with lower values of dielectric permittivity
and loss than encountered at JPG. Their transmitters do not exceed 8 W (peak
power) in order to protect the nearby receiver. Data was also acquired using 100-
MHz antennas but are not discussed because the direct coupling between these
antennas, which lasts approximately 30-50 ns, obliterated any near surface returns.
The antenna directivity, becomes increasingly confined beneath the antenna as €
increases (Arcone 1995). The typical shape of a transmitted GPR wavelet for either
the 300- or 600-MHz antenna system is shown in Figure 20. The phase polarity
sequence of the half-cycles defines the wavelet phase (Arcone 1995).
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Additional electrical properties. A DICON probe was used to take in situ
point measurements of the electrical properties of the soil. The following
information describing the DICON probe is extracted from Miller et al. (1992). The
DICON (DlIelectric/CONductivity) probe measures the conductivity and dielectric
constant of the soil at a frequency of 60 MHz. Each DICON probe unit consists of
two separate pieces of equipment, a probe assembly and a reflectometer. The probe
head consists of two half-cylindrical-shaped brass plates attached to an insulating
body of polytetrafluoroethylene (Teflon®), with a small gap between the plates.
The brass plates on the probe head represent two capacitors; one internal to the
probe with the Teflon as the dielectric and the other external with the soil as the
dielectric. The plates behave as a simple capacitor with the soil in their immediate
vicinity as the dielectric with virtually no electromagnetic radiation outside of the
plates. The reflectometer houses the electronics of the DICON probe. A voltmeter
placed on the top face of the reflectometer displays the real (R) and imaginary (I)
components of the complex reflection coefficient.

Prior to making any measurements the probe is calibrated following a standard
procedure (Miller et al. 1992). Readings are taken by inserting the probe head to
the desired depth into a one inch diameter augered hole. The displayed real and
imaginary components of the complex reflection coefficient are used to calculate the
electrical conductivity and relative dielectric permittivity.

Field procedures
40-acre site

Electrical resistivity soundings. The locations of the 25 Schlumberger
resistivity soundings are shown in Figure 17. All of the soundings were oriented
east-west with the exception of soundings located at M7, 17, E7, and A7, which
were oriented north-south. The minimum current electrode spacing was 1.0 m and
the maximum spacing was 200 m, allowing a depth of investigation of at least 25 m.

EM31 surveys. EM31 data were collected along north-south oriented lines A-
O spaced 100 ft apart (Figure 17). The EM31 was programmed to collect readings
every 2 seconds along each survey line or approximately 1 reading for every 6 ft.
The EM31 was placed approximately 3 ft from the ground surface on a non-metallic
cart and hand-towed along each survey line. Conductivity and inphase readings
were collected at each survey location. Fiducial markers were marked in the data at
100 ft intervals while collecting the data along each line for position reference. A
data logger connected to the EM31 was used to store the data during the surveys and
at the conclusion of each survey the data were transferred to a field computer for
later processing.

Ground penetrating radar surveys. Profiles were run along established
transects and electronic event markers entered on the profiles at previously
established, 100-foot (30-m) distance marks. The transects generally deviated
1-2 m from a straight line, but sometimes as much as 5 m to avoid isolated bushes,
trees and tire ruts. Consequently, the position along the lines cannot be
reconstructed exactly, and errors may occur in the interpretation of distance between
markers. The antennas were dragged by vehicle at less than 1 m/s speed for long

Chapter 4 Supplemental Site Characterization 37



38

distances, and by hand for the small surveys over emplaced targets. All antennas
were polarized perpendicular to the transect direction. It was determined that
vehicle reflections were not in the data by comparing profiles recorded with and
without the vehicle. The smaller antennas were placed in a fiberglass box to
alleviate erratic antenna to ground coupling. However, the uneven towing speed
over the rough ground also degraded the appearance of the profiles.

DICON probe measurements. DICON probe measurements were taken at 25
stations as shown in Figure 17. The readings were taken at depths of 0.1 and 0.5 m.
The locations of the DICON probe measurements corresponded to the center of an
electrical resistivity survey line.

80-acre site

Electrical resistivity soundings. The locations of the 14 Schlumberger
resistivity soundings are shown in Figure 18. Soundings located at B13, D13, H13,
K13, and H1 were oriented east-west and the remaining soundings oriented north-
south. In addition a sounding at H13 was conducted using a north-south line
orientation. The minimum current electrode spacing was 0.5 m and the maximum
spacing was 98 m, allowing a maximum depth of investigation of about 25 m.

EM31 surveys. EM31 data were collected along north-south Line H and along
east-west Line 13 as shown in Figure 18. The EM31 was programmed to collect
readings every 2 seconds along each survey line or approximately 1 reading every
6 ft. The EM31 was placed approximately 3 ft from the ground surface on a non-
metallic cart and hand-towed along each survey line. Conductivity and inphase
readings were collected at each survey location. Fiducial markers were marked in the
data at 100 ft intervals while collecting the data along each line for position
reference. A data logger connected to the EM31 was used to store the data during
the surveys and at the conclusion of each survey the data were transferred to a field
computer for later processing.

DICON probe measurements. DICON probe measurements were taken at 13
stations as shown in Figure 18. The readings were taken at depths of 0.1 and 0.5 m.
The locations of the DICON probe measurements generally corresponded to the
center of an electrical resistivity survey line.

1-hectare site
Test principles and equipment

Five types of geophysical data were collected at this site: terrain conductivity,
magnetometer, electrical resistivity, GPR, and DICON probe. Terrain conductivity,
electrical resistivity, and DICON probe measurements were collected using the same
instrumentation as used at the 40- and 80-acre sites. The magnetometer and GPR
system used at the 1-hectare site are described below.

Magnetic surveys. A magnetic survey measures changes in the earth's total
magnetic field caused by variations in the magnetic mineral content of near surface
rocks and soils or ferrous objects. These variations are generally local in extent.
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The magnetic response is attributed both to induction by the earth’s magnetic field
and to remanent magnetization. Remanent magnetization is permanent
magnetization and depends on the thermal and magnetic history of the body; it is
independent of the field in which it is measured (Breiner 1973). Induced
magnetization is temporary magnetization that disappears if the material is removed
from the inducing field. Generally, the induced magnetization is parallel with and
proportional to the inducing field (Barrows and Rocchio 1990).

A GEM GST-19T proton precession magnetometer with an accuracy of
1 nanotesla (nT) was used to collect the magnetic survey data. This magnetometer
is equipped with a sensor that contains a hydrogen-rich fluid as a source for the
protons. The proton precession magnetometer is based on the principle that protons
will precess freely in the presence of the earth's magnetic field. The hydrogen-rich
fluid is subjected to an external magnetic field applied in a direction approximately
perpendicular to the earth's field. The proton's moment will align in the direction of
the resultant field between that of the external magnetic field and earth magnetic
field. When the external field is removed, the magnetic moment of the proton will
precess about the earth's field until it returns to its original alignment with the
earth's magnetic field. The proton precesses at an angular frequency which is
proportional to the magnetic field. Therefore, by measuring the frequency at which
the protons precess the strength of the local magnetic field can be determined.

Any material or object having a magnetic susceptibility will contribute to the
total magnetic field measured by the magnetometer. If an object is present such that
its magnetization is great enough to perturb the ambient magnetic field, then it will
appear as an anomaly on the magnetic data plot. The size, depth of burial, magnetic
susceptibility, and remanent magnetization of the object determine the magnitude of
the anomaly and thus affect the ability of the magnetometer to detect the object. For
a given susceptibility and remanent magnetization, as the size of the object
decreases and depth of burial increases, the magnitude of the anomaly decreases;
eventually the anomaly will be undetectable.

Ground penetrating radar surveys. A thorough discussion on GPR
principles is given in the 40-and 80-acre Site - Test Principles section presented
above. Although a different GPR unit was used at the 1-hectare site than was used
at the 40-acre site, basic GPR principles remain the same. A Sensors & Software,
Inc. modified pulseEKKO IV system was used to collect the GPR data at the 1-
hectare site. The pulseEKKO IV is a low frequency antenna system (12.5-200
MHz). The nominal center-frequencies of the antennas used in this investigation
were 50, 100, 200 MHz. Both reflection profiling and velocity sounding GPR
surveys were performed. In reflection mode, the transmitter and receiver antennas
are kept a fixed distance apart and both antennas are simultaneously moved along
the survey line. The time (in nanoseconds) required for the EM wave to travel
through the subsurface and return to the receiver is recorded at each sample station.
The received signal is plotted against two-way travel time at each sample station
along the survey line. Figure 21 illustrates the reflection mode concept and the
corresponding GPR response for the hypothetical anomaly shown. The common-
midpoint (CMP) technique is used to perform the velocity sounding. The transmitter
and receiver antennas are initially placed a given distance apart, and then moved
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outward from the center at small, equal increments. By plotting antenna separation
versus time, the various EM wavefronts can be identified and an approximate radar
wave velocity obtained.

Field procedures

The survey grid was flagged at 2 m intervals along the north and south
perimeter, and at 5 m intervals along the east and west perimeter. Additional
flagged lines (2 m flag intervals) were placed at 20 m intervals in both the north-
south and east-west directions. The emplaced flags were used to as a navigation aid
during data collection. The terrain conductivity data were collected along 2 m
spaced survey lines with a measurement acquired at 1.0 second intervals, providing
one reading per meter. The magnetometer sensor was mounted on a backpack worn
by the operator and positioned approximately 1.5 m above the ground surface.
These data were acquired at 0.5 seconds intervals along 1 m spaced survey lines,
which resulted in one reading per meter. Fiducial markers were placed in the data at
5 m intervals for position reference while collecting the data. A data logger
connected to the conductivity meter was used to store the data during the surveys
and at the conclusion of each survey the data were transferred to a field computer for
later plotting. The magnetometer data were stored internally in the unit’s control
console and later transferred to a field computer. Schlumberger resistivity
soundings were performed along selected survey lines, which included both north-
south and east-west oriented lines. A minimum of five measurements per
logarithmic decade were taken, with the electrode spacings approximately equally
spaced on a logarithmic scale. The minimum current electrode spacing was 1 m and
the maximum spacing was 120 m, allowing a depth of investigation of at least 15 m.

GPR reflection and CMP data were collected along both north-south and east-
west oriented profile lines. For the reflection GPR surveys, the distance between the
50, 100, and 200 MHz transmitter and receiver antennas were kept at a constant
spacing of 2.0, 1.0, and 0.5 m, respectively, and oriented normal to the survey
direction. The data were collected in high speed data acquisition mode at sampling
intervals of 0.25 m (50, 100 MHz) and 0.1 m (200 MHz). The data were recorded
on a field computer for later processing. When performing the CMP surveys, the
transmitter and receiver antennas were initially spaced at the respective antenna
spacing used during the reflection survey, and then each antenna is moved outward
in increments of 0.1 m (50, 100 MHz) or 0.05 m (200 MHz) relative to the center
point. An average EM wave velocity of the medium was determined based on the
CMP data.

DICON probe measurements were taken at nine stations within the grid and at
three depths (0.1, 0.3 and 0.5 m) at each station. The location of a DICON probe
measurement corresponds to the center of a resistivity sounding or a position along
a GPR profile.

The locations of the electrical resistivity soundings, GPR profiles and DICON
probe measurements are shown in Figure 19. The arrows in the symbol denoting a
resistivity sounding indicate the direction of expansion of the array.
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5 Soils Investigations

Introduction

Prior to the present study, investigators held the distinct impression that soils at
JPG were predominantly clay. This impression about the JPG soils was so strong
that it was the basis for the decision to establish a 1-hectare site at JPG to
complement the four DARPA Backgrounds Program sites (Figure 3). Descriptions
from the original JPG site characterization (field boring logs and soils laboratory
testing results) indicated that the soils were clayey-silts, silty-clays, and clays.
Visual soil classifications were OL-ML for depths less than 0.15 to 0.2 m and CL-
CH for depths greater than 0.2 m (soil classifications are described below), and
particle-size gradation of the samples was 80 to 90 percent silt- and clay-sized
materials (PRC Environmental Management, Inc. 1994a). Additionally, GPR is
known, based on both ground-based and airborne GPR demonstrations at the sites,
to perform very poorly; high GPR signal attenuation is reported. The poor GPR
performance is consistent with the soils descriptions as clays.

The present work includes (1) visual classification, (2) laboratory geotechnical
properties determinations (including water content, Atterberg limits, organic
content, specific gravity, and particle size gradation), (3) laboratory EM properties
determinations, and (4) laboratory XRD analysis (to determine soils mineralogy and
clay identification).

40- and 80-acre Sites

Physical properties

The soils analysis indicate that the soils from the 40- and 80-acre sites are very
similar. All the soils are classified either as CL or CH with the exception of the
10 cm sample collected at location G7 at the 40-acre site which is classified as an
ML. The grain-size analysis for the 40-acre site indicates that 85 percent of each
soil sample, on average, passed the No. 200 sieve (0.075 mm opening) whereas
94 percent passed the No. 200 sieve for the 80-acre site samples. The average
specific gravity and organic content values for the 40-acre site samples are 2.63 and
2.6 percent, respectively, and 2.67 and 3.3 percent, respectively, for the 80-acre site.
The average natural water contents, in percent, for the 10, 50, and 100 cm deep
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samples for the 40-acre site are 12.6, 19.6, and 18.8, respectively, and 14.6, 18.2,
and 22.5, respectively, for the 80-acre site. Tabulated results of the laboratory
analysis for 40-and 80-acre sites are presented in Tables 2 and 3, respectively.
Appendixes A and B present the soil gradation curves for the soil samples collected
at the 40- and 80-acre sites, respectively.

As mentioned in Chapter 4, the soils are classified according to the USCS,
where the classifications CL and CH refer to low (L) and high (H) plasticity clays
(C) and ML refers to low plasticity silts and very fine grained sands. A way to view
the classification scheme is a plot of liquid limit (LL) versus plasticity index (PI),
where LL and PI are Atterberg limits index properties of soils. Figure 22 adapted
from Means and Parcher (1963) and Casagrande (1947), illustrates the soil
classification scheme and shows the JPG soils (data from Tables 2 and 3). The JPG
soils are problematic in terms of classification in that they are very near the “A-
Line”, that typically separates organic (below the A-Line) from inorganic soils, and
are in a region of the classification chart where soils can be either clays, sandy-clays,
and silty-clays, or silts and very fine-grained silty-sands
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XRD analysis

Eleven soil samples were tested to determine the bulk mineralogy and clay
minerals present by XRD. A list of the sample locations is shown in Table 4.

Table 4
Location of Soil Samples Used for XRD Analysis,
40- and 80-acre Sites

| Site Soil Sample Location
Il 40-acre C7,G7, K7
" 80-acre A13

Soil samples were tested from depths of 10, 50, and 100 cm with the exception of
location K7 which had samples from depths of 10 and 50 cm, only.

In preparation for the XRD analysis of the bulk samples, a portion of each
sample was ground in a mortar and pestle to pass a 45.m (No. 325) mesh sieve.
For subsequent analysis of the clay-size fraction a slurry of the powder with water
was made, suspended on a substrate, and allowed to dry overnight. An XRD pattern
was collected on these resultant oriented samples. These samples were then placed
in an ethylene glycol atmosphere overnight at room temperature, and a XRD
diffraction pattern was collected for each sample.

Bulk sample random powder mounts were analyzed using XRD to determine the
mineral constituents present in each sample. All samples had similar mineralogies
which included mostly quartz, and Na- and K-feldspar. Quartz was the predominant
mineral in all the samples. Na- and K-feldspar were also common constituents in
each sample. The patterns also indicate the samples have a small, but finite amount
of phyllosilicates present.

To determine the type of phyllosilicate present, oriented samples of the <1pm
size fraction of each sample were prepared and XRD patterns obtained. It was
observed that the <1um size fraction of each sample still contains a dominantly
large proportion of quartz and Na- and K-feldspar. Other phases present in minor
or trace amounts in most samples include kaolinite, illite or mica, chlorite, a
hydroxy-interlayered smectite, and/or smectite. To determine if there was a any
expandable component in these fractions, each oriented sample was exposed to an
ethylene glycol atmosphere. Smectite, if present, in the sample will expand to
1.7 nm (17A). Chlorites and hydroxy-interlayered smectites will not expand upon
exposure to this compound. The data indicate that there is a very small amount of
expandable clays present in each sample. Table 5 lists representative chemical
compositions for the minerals found in the samples. The stoichiometries of the
minerals present in the samples will probably vary from these values (Weiss 1998).



Table 5

Idealized Phase Compositions for Minerals Found at

the 40- and 80-acre Sites

Mineral Composition

Quartz Sio,

Na-feldspar NaO zCa0.1AlSi,O,

K-feldspar KAISi;O4

Kaolinite AlSi40,,(OH),

Illite/Mica K,Al, (SigAl)0,0(0H),

Chilorite [(R2+,R3+) 6 (Si,Al) 8020 (OH) 4] [(R2+,R3+) 6
(OH) 12]

Hydroxy-interlayered smectite Variable composition

Smectite Variable composition

Dielectric Properties

Laboratory experiments were conducted on soil samples collected from the 40-
and 80-acre sites to determine their dielectric properties. These properties control
the subsurface propagation of electromagnetic energy and are thus important in
assessing and predicting the effectiveness of GPR for detecting UXOs. The
electromagnetic wave attenuation values and velocities measured in the laboratory
can be used to predict a particular GPR antenna’s depth of penetration and to
estimate depths to targets or anomalies.

The same samples used for the physical laboratory soil analysis performed
above were used to measure the dielectric properties and are again listed below.

Site Sample Location
40-acre C1,C7,C13,G1,G7,G613,K1,K7, K13
80-acre A13,H1,H13,H26,013

The samples were tested at three times, once at the natural water content, once after
air drying, and once at near-saturation conditions. Testing was conducted in a
stepped-frequency sweep (5 MHz steps) over the range of 45 MHz to 4.045 GHz.
From the complete set of data, EM properties as a function of volumetric moisture
content were extracted at frequencies of 100, 200, 495, and 1015 MHz, typical GPR
antenna frequencies. A more thorough discussion of electromagnetic theory and
laboratory procedures along with a complete data set and a discussion of results are
presented in Appendix C.
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Figures 23 through 28 present plots of the real constant (dielectric permittivity),
imaginary constant, conductivity, loss tangent, attenuation, and normalized phase
velocity each plotted as a function of volumetric moisture for all depths at the 40-
and 80- acre sites at 200 MHz, a typical GPR antenna frequency. For an average
soil water content of 25 percent the dielectric permittivity of the soil samples is
approximately 11. The plot of volumetric moisture versus signal attenuation shows
that at a water content of 25 percent the signal attenuation about 20 dB/m.

1-hectare Site

A summary of the 1-hectare site soil properties is provided in Table 6. The
0.1 m deep samples are classified as silt with clay and/or silt and the 0.5 and 1 m
deep samples are classified as sandy or silty clay. None of the samples contain
gravel-size particles. The samples, on average, contain 81 percent fines (silt and
clay-size); and eliminating the samples from location (122E,8N), which are
anomalous compared to all other samples, the 1-hectare samples contain an average
of 88 percent fines. Figure 22 shows a plot of LL versus PI for the 1-hectare soils
and how they compare with the 40- and 80-acre soil samples. The soil water
content generally ranges between 20 and 36 percent, the exception being the
samples collected at (122E,8N) with a water content of 13-18 percent and at
(123E,97N), 1 m depth, with a water content of 18.6 percent. The soil gradation
curves for samples collected at the 1-hectare site are provided in Appendix D.

Summary and Conclusions from Soils Analysis

Laboratory analysis indicate that the soils at the 40- and 80-acre sites are very
similar in terms of classification. All of the soil samples, with the exception of one,
are classified as either (CH) or (CL) and in general are characterized as clays or
sandy clays. The one exception was the sample collected at the 40-acre site at depth
of 0.1 m at location G7 which is classified as ML, sandy clayey silt. Plotted on a
plasticity chart, the soil samples are very near the A-line and exhibit little plasticity.
Average water contents, even under very dry environmental conditions, show an
increase with depth and range from 13.9 percent at a depth of 0.1 m to 20.3 percent
atadepthof I m.

The samples are characterized as clays or sandy clays according to the USCS.
This classification is based in part on grain size and not mineralogy. In the USCS,
soil particles passing the No. 200 sieve are considered silt or clay. However, in the
case of the JPG soils XRD analysis show that these soils contain little or no clay
minerals. The XRD analysis indicate that these soils consist chiefly of very fine
grained (silt or clay-sized) quartz particles. This finding is consistent with other
studies of loess in the southern United States (Rodbell et al. 1997), which show a
predominant amount of quartz, and also with studies in the interior of Alaska
(Péwé 1955).

The general results of the laboratory EM properties show that the dielectric

permittivity values of the soil samples collected at the 40- and 80-acre sites are
relatively high. For the range of frequencies tested, 100 to 1015 MHz, the values
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range between approximately 10 and 12. The soils also exhibit high signal
attenuation at typical field soil water contents. For 200 MHz and typical water
content conditions, the attenuation approaches 20 dB/m.

The 1-hectare site soils exhibit similar characteristics as those of the 40- and
80- acre site with the exception of water content. Generally, the 1-hectare site water
contents are higher than those found at the 40- and 80-acre sites. The average water
content of the 1-hectare site soils, for all depths, is 27.6 percent. However, the 1-
hectare site samples were collected in October, while soil conditions were wet,
versus August, when samples were collected at the 40-and 80-acre site, and soil
conditions at the sites were drier.
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6 Geophysical Test Results
and Interpretation

40-acre Site

Electrical resistivity soundings

The results of the Schlumberger resistivity soundings conducted at the 40-acre
site are summarized in Figures 29 through 32. Figures 29 through 31 show the
sounding results obtained along north-south lines C, G, and K, respectively, whereas
Figure 32 shows the results of the data obtained along east-west trending line 7.
Generalized results indicate a 3-or 4-layer model. The 2 models are similar with the
exception that an intermediate layer is interpreted between the surface layer and the
low resistivity layer for the 4-layer model. The top layer in both models is relatively
thin, less than 1 m in thickness, and has a relatively high resistivity ranging between
about 150 and 1000 Q-m (1-7 mS/m). The intermediate layer interpreted in the 4-
layer model is about 1.4 m thick and has a resistivity of approximately 110 Q-m
(9 mS/m). The upper and intermediate layers appear to consist primarily of silts
with the amount of clay and/or moisture increasing with depth. Both models
indicate an underlying very low resistivity layer, exhibiting a resistivity of about
35 Q-m (29 mS/m) and a thickness of 3.5 m. This low resistivity layer is presumed
to correspond to a moist to wet soil with a high clay content. The deepest layer
interpreted for both models has a relatively high resistivity of approximately
1250 Q-m (<1 mS/m) and is found at depths ranging between 1.9 and 7.0 m. This
layer is interpreted to be the limestone/dolomite bedrock. The sounding curve and
model for each resistivity sounding are presented in Appendix E.

DICON probe measurements

The results of the DICON probe measurements are shown in Table 7. The
range of values for the relative dielectric permitttivity, conductivity, and wave speed
are 8.6 t0 35.3, 7.1 to 98.4 mS/m, and 0.051 to 0.102 m/ns, respectively. The
average values for the relative dielectric permitttivity, conductivity, and wave speed
for the 10 cm depth samples are 14.4, 14.2 mS/m, and 0.081 m/ns, respectively.
The average values for the relative dielectric permitttivity, conductivity, and wave
speed for the 50 cm depth samples are 24.2, 37.4 mS/m, and 0.064 m/ns,
respectively.
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Table 7
DICON Probe Data, 40-acre Site
Relative
Dielectric Conductivity Wave Speed
Location Depth, m Permittivity mS/m m/ns
Ct 0.10 16.0 13.9 0.075
0.50 256 36.1 0.059
C3 0.10 175 26 0.072
0.50 309 98.4 0.054
c5 0.10 235 219 0.062
0.50 241 285 0.061
c7 0.10 14.7 11.2 0.078
0.50 292 46 0.056
c9 0.10 9.7 10.5 0.096
0.50 210 245 0.066
C11 0.10 141 16.0 0.080
0.50 17.2 18.1 0.072
c13 0.10 10.0 12.8 0.085
0.50 13.0 14.9 0.083
G1 0.10 10.9 107 0.091
0.50 214 279 0.065
G3 0.10 131 1.5 0.083
0.50 299 554 0.055
GS 0.10 15.2 154 0.077
0.50 315 558 0.054
G7 0.10 185 14.6 0.070
0.50 26.1 354 0.059
G9 0.10 18.1 19.0 0.071
0.50 233 296 0.062
G11 0.10 17.9 202 0.071
0.50 24 294 0.063
G13 0.10 123 13.1 0.086
0.50 24 294 0.063
K1 0.10 131 115 0.083
0.50 289 473 0.056
K3 0.10 16.3 17.9 0.074
0.50 26.1 447 0.059
K5 0.10 135 18.4 0.082
0.50 19.0 302 0.069
(Continuedej
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“Table 7 (Concluded)

Relative
Dielectric Conductivity Wave Speed
Location Depth, m Permittivity mS/m m/ns
K7 0.10 11.6 125 0.088
0.50 353 96.5 0.051
K9 0.10 19.1 127 0.069
0.50 29.2 40.1 0.056
K11 0.10 123 124 0.086
0.50 214 24.1 0.065
K13 0.10 86 110 0.102
0.50 203 279 0.067
A7 0.10 88 7.1 0.101
0.50 224 226 0.101
E7 0.10 179 173 0.07
0.50 236 322 0.062
17 0.10 143 116 0.079
0.50 175 18.7 0.072
M7 0.10 121 10.6 0.086
0.50 23.2 225 0.062
Average 0.10 14.4 142 0.081
0.50 24.2 374 0.064

EM31 surveys

Figures 33 and 34 respectively, present the results of the conductivity and
inphase surveys conducted at the 40-acre site. The conductivity values generally
range between 10 and 30 mS/m (33 and 100 Q-m). The average conductivity value
obtained from the DICON probe falls within this range of values. The EM31
conductivity results (10 to 30 mS/m) agree with the resistivity sounding values
(approximately 17 mS/m) for the upper 4-6 m. The lowest conductivity values are
found at the north central part of the site in a topographically low area. A wide,
high conductivity lobe extends from approximately (-400E,600N) to (-850E,-20N);
no visible topographic features are correlated with this high conductivity zone. The
inphase results generally range between -0.9 and 0.8 ppt and show considerable
variability across the site. Since the inphase readings are sensitive to metallic
objects it is possible that the high degree of variability in the inphase values may be
attributed to the large amount of buried metal at the site.

Figure 35 shows the 40-acre soils map with the superimposed EM31
conductivity results. The figure shows the correlation of soil type and conductivity.

Chapter 6 Geophysical Test Results and Interpretation
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Ground penetrating radar surveys
Postprocessing and display of data

The recorded data was first band-pass-filtered (very wide settings; e.g. 50-
600 MHz for the Model 5103 antenna) to alleviate high-frequency electronic noise
and low-frequency, above-surface, clutter. The number of data traces between event
markers over the emplaced targets were normalized to compensate for changes in
dragging speed. The longer profiles with the 100-foot marker spacing are not
normalized because vehicle speed varied between any two markers.

Both linear and nonlinear gray-scale formats were used to indicate signal
strength. An amplitude format was used to display the profiles for the buried
control targets. In this format, positive phase is indicated by lighter tones and
negative phase by darker tones. An intensity format was used to display the profiles
of the permanent targets at JPG. In this format, which is insensitive to phase,
strength is indicated by the intensity of the darker tones.

Profile interpretation

The main objectives of the profile analysis are to determine a range of € values
for the site soil and if ordnance targets had been detected. The permittivity analysis
uses the diffractions caused by radar scattering from targets. In this method, the
hyperbolic shape of the diffractions is matched with theoretical hyperbolas for a
given value of € (Jezek et al. 1979; Clarke and Bentley 1994; Arcone et al. 1998).
The main disadvantages of this approach are (1) the hyperbolas can actually be
responses to linear soil inclusions, in which case the hyperbolas are actually the
distorted reflections that result when the transect obliquely intersects the inclusion
direction (Jezek et al. 1979) and are thus, artificially wide; and (2) an erratic towing
speed, which would distort the hyperbolic image. Item (1) was not considered
important because of the depositional process of the soil (glacial drift and loess) and
because of probable historical tilling. Number (2) is a concern and for this reason a
statistical study is presented.

Target detection depends on the presence of either or both diffractions and
reflections, and also on their phase polarity. Both the strength and phase polarity of
a reflected/diffracted event depend on the reflectivity of a target, which is
determined by its Fresnel reflection coefficient R, where

R=(g*"? - €H)/(¥” + '), ©)

and ¢ is the complex permittivity for the target medium (Wait 1970). Although this
formula applies to plane wave incidence upon large flat reflectors, its use is invoked
because of the small in situ wavelengths (30 cm at 300MHz) and large nature of
some of the targets known to be buried at JPG and because it predicts the correct
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phase polarity. For a metal target, assumed to be ordnance, ¢, is orders of
magnitude higher than €,* and produces a wavelet with a phase structure opposite to
that produced when ¢, is lower than €*.

It is unlikely that any profiled geologic or organic inhomogeneity in the soil had
a higher ¢, than that of the soil itself. Consistent horizons were virtually absent in
the data, which means that electrically important changes, such as in moisture
content, were gradational. The soil-limestone interface is likely not detectable, since
€ of limestone is generally between 8 and 10 (Parkhomenkho 1967), which is near
that of the soil and resulting in R being approximately equal to 0. Also, the
limestone is generally too deep (see Chapter 3), considering the high EM attenuation
(see Chapter 4 and Appendix C).

Results and discussion

Control studies. The objectives for the control studies were to obtain profile
responses and wavelet forms for buried metal reflectors, as well as soil moisture and
conductivity profiles. The studies were conducted either outside or along the
perimeter of the 40-acre site (Figure 36). Two, 9-inch (23 cm) diameter metal disks
were buried at depths of 11 (28 cm) and 23 (58 ¢m) inches. The removed soil was
highly compact and did not appear to have excess moisture. Therefore, it is
presumed that no significant soil drying took place between removal and reburial.
The 300- and 600-MHz diffraction profiles from the deeper target (Figure 37) (the
response to the more shallow target is not sufficiently separated from the direct
coupling between antennas to facilitate analysis) best fit theoretical diffraction
hyperbolas for € = 9.3 and 8.6 at 300- and 600- MHz, respectively. The values of
€, computed from the wavelet round-trip travel time when the antennas are over the
center of the targets, are 9.5 and 8.7, respectively. In accordance with the
measurements, dielectric dispersion theory (eq. 4, and discussed below) predicts that
the 600-MHz value should be slightly less than the 300-MHz value

The accompanying profiles in Figure 37, whose positions within the traces are
indicated by arrows, show the forms of the scattered wavelets within the
diffractions. The wavelets have a negative-positive-negative sequence to the phase
polarity of the dominant half-cycles. This sequence is typical for the relative
polarity wiring of GSSI antennas and is characteristic of targets whose wave
impedance (eq. 6) is higher than that of the surrounding media. Targets
characterized by an € value less than that of the soil matrix would produce a similar
wavelet, but with opposite phase polarity of the individual half-cycles. The local
frequency is indicated for the wavelets.

The amplitude along the 600-MHz hyperbolic asymptotes in Figure 37 rapidly
fades with distance from the target. This indicates a very high soil attenuation rate
per meter; the change in antenna directivity with angle to the target (discussed later)
is an insignificant loss factor. Commercial GPR systems at these frequencies
commonly have a performance figure of about 100-120 dB and a dynamic range
(the amplitude range visible in any particular trace) of about 60-70 dB. This latter
range is consistent with the gain added before recording and with soil attenuation
rates discussed later.

Chapter 6 Geophysical Test Results and interpretation
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Figure 37. Diffraction profile and waveform response of 300 and 600 MHz

antennas to a metal disk buried 23 inches deep, 40-acre site
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The volumetric water content profiles of soil core samples (obtained before rain
occurred) show values ranging from about 15% at the surface to as high as 40% at
30-180 cm in depth (Figure 38). The water contents within the profile of the core
obtained about 24 hours after steady rain had begun ranged from 23%—45%, the
latter of which is at about saturation for this type of soil. The core obtained above
the 58 cm deep target showed a moisture content that varied from 15% at 15 cm
depth to 24% at 50-70 cm depth. According to Topp et al. (1980), these water
contents correspond with € values ranging from about 7 (15%), to 12 (25%), which
agrees well with values of 8.6-9.5 obtained for this soil column. A time-of-flight
analysis, in which the appropriate € was ascribed to the 10-cm soil increments and
then calculated the time delay in each increment, gives an effective € value of 9.5
(Figure 38, profile 2).

The soil conductivity values measured at the site strongly influence EM wave
attenuation below about 400 MHz, while the imaginary part of €*, €”, influences
attenuation above 400 MHz (discussed later). Although €” was not measured or
determined from the field surveys, the high amount of gain used for the radar
measurements indicates a high attenuation rate for this soil and is consistent with
the above range of o and the high €” values and high attenuation observed in the
laboratory EM properties measurements.

Grid survey: 300 MHz. The transect lines on the 40-acre site are
superimposed on maps of target and ordnance distribution in Figure 36. The lines
surveyed are designated as transects A, B, C, etc. and are 1300 feet (396 m) long.
The class of target (ordnance or non-ordnance) is indicated on the map. Additional
information regarding exact location, type of target, target depth, and approximate
orientation are available. All ordnance are metal.

Figure 39 shows a typical 300-MHz profile segment before and after horizontal
background removal filtering. Intensity is linearly proportional to signal amplitude
in the profile. The time range is 50 ns, beyond which noise became severe,
corresponds to about 2.3 m of penetration for € = 10.4, the average value obtained
at JPG (discussed later) The direct coupling between antennas occupies about 8 ns
of the record and masks part of the responses to some of the targets. The noise
bands between about 30 and 40 ns are probably caused by radiation leakage onto
the cables that reflected back to the receiver, and internal system mismatch
reflections caused by either the high value of € at the surface or poor system design.
In both cases, erratic ground contact, caused by uneven topography and jerks in the
towing, cause the amplitude of these bands to vary and precluded the efficacy of
horizontal filtering. No distinct and extended horizons indicative of soil
stratification or a bedrock interface appear within the 2-3 m of radar penetration
along any of the profiles.

Arrows are used to identify several targets of anomalously high amplitude in the
unfiltered profile of Figure 39. These targets are characterized by both hyperbolic
diffractions (between 859 ft and 865 ft) and short reflection segments. Although
the background filtering reduces the noise bands and the direct coupling, it also
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Figure 39. Sample segment of a 300 MHz profile, 40-acre site



attenuates many target responses, especially those characterized by short reflection
segments such as occur near 926 ft, 915 ft and 900 ft. The use of more traces (i.e.,
a wider “window”) in the background filter would retain these reflection responses
but at the expense of less noise reduction.

In general, a total of 30 high amplitude targets were detected along all 14 lines,
of which eight responses are shown within segments of these profiles in Figure 40.
The phase structure of several of the target wavelets (transects C, left; G, left; K,
left; and I, left) identifies them as being of higher impedance than the surrounding
soil matrix. Therefore, they are probably metal. Other target wavelets have a phase
structure opposite to that of the metal response (transect F, both left and right;
transect K, right). It is presumed that these responses are from the non- ordnance
targets. Some targets exhibit waveform resonance, within which the first few half-
cycles have the metal response waveform (transect C, right), while other targets
exhibit resonances within the direct coupling and cannot be similarly analyzed
(transect G, right; transect L, right). These latter resonances occur where targets are
extremely close to the surface; i.e., where target multiple reflections occur before
soil attenuation dampens them significantly. In all cases, diffraction asymptotes are
so highly attenuated as to be either barely visible for small targets (transect G, left),
as was seen in the control studies of Figure 37, or not visible at all where they
should occur at the ends of short reflection segments recorded above more extended
targets (transect C, left).

Probable interpretations to the target responses seen along transect C (left side)
and along transect K (left side) are presented in Figure 41. The response along
transect C is about 7 ft (2.1 m) long, which is nearly the length of a heavy bomb
(1.6 m). The location of this response (533-572 ft) is marked in Figure 36b. The
more complex response along transect K is about 12 ft (3.7 m) long and occurs in a
section marked as having several medium-size mortars and projectiles. A JPG UXO
ordnance brochure shows many of these projectiles to be about 2 ft (0.6 m) long. It
is speculated that this transect segment spanned a series of closely spaced
projectiles.

Grid survey: 600 MHz. This survey was conducted along four of the 14 grid
lines. The profile segments containing the seven strongest target responses
(Figure 42) are shown in a nonlinear format because the amplitudes of all the
returns are extremely weak, hence the appearance of much more noise (gray speckle
patterns) in the profiles than appeared at 300 MHz.

Small segments of diffractions are apparent in all the target responses in
Figure 42; the lack of asymptotes indicates the high signal attenuation. Almost all
of the responses have well-defined wavelets which exhibit the proper phase for a
high-impedance target. These responses originate from depths less than about
0.5 m and would not have been resolved from the direct coupling of the 300-MHz
system. Although the time range is only 30 ns, very few target responses occurred
at greater than about 20-ns range. Therefore, the depth of penetration of this
frequency in this soil was limited to about 1 m.

Chapter 6 Geophysical Test Results and Interpretation

77




(w) ydag

672’

| { :s}'iillllsr

L

oy
E FERSEN ot

Transect C

(w) wdag

Depth based one' = 10.4

285

="

ﬂ[\/\ IAAAI\AA Ay

% “‘ n AA' l_l\ Iy
l” v 3 BTR'ER AN AR A el
1k . ‘nl/fp} g i‘ to

e

(w) ydeg

& — Transect C '_

Transect F

|

L

]
Figure 40. Selected target responses within segrhénts extracted

w
B
@
&
s
] ]
~ N -
(w) ydag

from 300 MHz profiles, 40-acre site (Continued)

78

Chapter 6 Geophysical Test Results and Interpretation



e -'.;fv.i?‘f?':&cﬁ

e
e
"

.
1

e T
' s i;[ -'¢I>',_‘~ 4,’)_, K
o TR

T

- }le

T~

| .'i‘rar_réecth:G

22— Transect G

(w) wdag

(w) yideg

28971204

iy > —
P e Y ] A
- et = Z
- O, B -
m——— - 3 .
L > "0 L
tf‘.‘. =l S .
. \ﬁ:h -
S A AN,
-z AT e %
T Sy | N
-
= &
e I
.S
o T

O e >

239/

Transect K

2391

-

(w) yidaq

2

Depth based on €’ = 10.4

ses within segments extract.e“&‘
40-acre site (Continued)

from 300 MHz profiles,

Figure 40. Selected target respon

Chapter 6 Geophysical Test Results and Interpretation

~
[{e]




(w) yideg

. 4

0
i
) O

i,

i

v

4
»})pf

@, i

UL

pi

i

[

Transect L

Depth based one’ = 10.4

h 252

| TTTTTIV.

[t

T

i “}BQQ' T,;. 1;3"

Lo

b

763'357

Jov

#,

T
: et
i f‘ .
AR,

i ,‘7’(’\1' ‘. Lo -

i,
| Slbffggm;;:‘;gf

| V-"!ﬁ)f TRE

240

. {/m/\nl’\m AP

718/

0 —o

x—

+ (w) wdeg

2 - Transect | _

from 300 MHz profiles, 40-acre site (Concluded)

80

Figure 40. Selected target responses within segments extracted

Chapter 6 Geophysical Test Results and Interpretation



-

Depth (m) é=10

2

0

Depth (m) &

2

TRCE
o

-Transect C
1

L300 MH=z

Time (ns)

~Transect K
TRAcE oF = p—
S —— f —
<> — ——4§
or - S e - T
< ] —t
;P £ =
—_ <, % <%
g = | 3 o
~ <> ‘» o,
o -
E sor i S r T
[ <‘> . <£> ;?
L D L > L F
o 8<% @ ¢ .
<<> ThRACE 3 TmAca 3 oAz
sok. . 123%9| | 25¢| - 326

Figure 41. Interpreted results for two reposes from 300 MHz profiles, 40-acres site

Chapter 6 Geophysical Test Res

ults and Interpretation

81



(w) yydeq

bRy PRt
s et

FE
st

233

L. y R E {821
s il

 Transect A

(w) wdeq

600 MHz profiles, 40-acre site (Continued)

Figure 42. Selected target responses within segments extracted from

82

Chapter 6 Geophysical Test Results and Interpretation



(w) ydeq
wn

Ty
.: ‘1“{"'?_;‘,:} ;’?\:‘a" (] I}
AR1A AR A
" fﬁ{

\gw?e"f% &

S st ivagmart 1) b gt pnibansuiedinguititbrlivalinpiur pyivkifieliovuniibiosipenamhunbasniiibalvinmi i

719’

(w) ypdeq

B e s T Y, WS S NI - . . . 3
— -+ . '_ ~ _‘v'l - =" - _l_-_- e ~e > o s : e —— o A ==
T DT T e T T e N T o Tl BRI s ¥ i S T Ty e
& K, O A R YOS I, ? TR nEo A M\r" » 3
3 . 3 % . Ay - o~ i 4 t N
. SIS s, & e A o - ' B 0 SR "
A e L e e I S R S e e
gz ;;,‘.i'."'l -M ! ':"'r s s P L b o I Lo O ]
Py % L Lol A L, ST :
SRt o B T K . . g ) £ N
by oty RY o] Foz H ~ A T 3 5 <
Yy (L T : ._",l@:jrr 3 S el A o i, ":' WS £
G, haies % i AR SREE AL AR z S A - R
AL q <3 oy " " e e g 2
- 2 T b ", e I © .
g ? kS ; o o : e "
- X . . : t 3 . i ”
[ R N : . .
N A o - . .

600 MHz profiles, 40-acre site (Continued)

Figure 42. Selected target responses within segments extracted from

Chapter 6 Geophysical Test Results and Interpretation

83



(w) yideg
n

1119’

258

4539f1155ﬂ

D
1

B SN
PO
- 1&'7.‘1;- [

TransectC

J kX
[]
\n
o] o) ~

(w) ydeg

£
et
L
o
o]
2
3]
©
} o
=
o
Y £%
: 1
! 5’2
&5
£
£2
2
" o
QD S
Q2 25
AN c O
2o
23
i
0
w2
o5
[
Sy
o
QI
o=
Lo
T O
o) ©
o
<t
o
S
S
K=
w

84

Chapter 6 Geophysical Test Results and Interpretation



Distribution of €’. The more prominent diffraction hyperbolas seen in both the
300- and 600-MHz surveys were compared with model hyperbolas to produce
distributions of € and to compute an effective mean permittivity value for the
overburden above the targets. Seventy hyperbolas were identified in the 300-MHz
survey and 48 in the 600-MHz survey. A statistical approach was used to average
the computational inaccuracies caused by the minor differences in distance scale that
resulted from inconsistent towing speeds. Seventy hyperbolas were clear enough in
the 300-MHz profiles and 48 in the 600-MHz profiles. Both distributions (Figure
43) exhibit nearly the same average value and similar standard deviations (s.d.),
although their distributions are slightly different. The 300-MHz distribution is
more bimodal, which may reflect different orientations of deeper targets; extended
targets whose axial direction crosses that of the transect produce hyperbolic
reflections rather than diffractions, with values of € reduced by the sine of the
intersection angle (Jezek et al. 1979). The 600-MHz distribution may reflect less
target orientation because it was limited to only lines A-D and to shallower depths.

Theoretical discussion

The average values of €, the range of g, the fact that € may be slightly less at
600 MHz than at 300, and the high radar gain and faded diffraction asymptotes,
both of which indicate high attenuation rates, allows for the estimation of the soil
dielectric properties at JPG (Figure 44) and to theorize their effect upon antenna
beamwidth and waveform. It is assumed that f;,, is about 3 GHz (Hoekstra and
Delaney 1974); if it was any lower, then € at 600 MHz would be distinctly lower
than it is at 300 MHz. A value of 3 was chosen for €., which is characteristic of
dry soils and applies to frequency values where water is non- dispersive. The o
values at JPG strongly influence B below about 400 MHz, while €, is the dominant
factor above about 400 MHz (Figure 44b). Unfrozen mineralogic clays can exhibit
even stronger absorption and may preclude any radar penetration at these frequency
ranges and above (Hoekstra and Doyle 1971).

The effects of the soil properties upon the round trip propagation of both a
model of the 300-MHz wavelet used in this survey and an ideal monocycle type
waveform were computed and are shown in Figure 45. A monocycle is the shortest
possible pulse an antenna can radiate and may be nearly achieved with unshielded
antennas. It therefore has a wider bandwidth than the system model used in this
study, and would provide the highest possible target resolution. Both wavelets start
propagation with a local frequency of 400 MHz (Figure 45a), which is that of
antenna model 5103 used in this study, when used on low permittivity (e.g., € = 4)
material. Both wavelets then experience strong attenuation caused by conductivity
alone (Figure 45b), but maintain their original form in this case and show no shift in
local frequency. However, Figure 45 c-d shows that shifts in local frequency will
occur when the dielectric relaxation is considered. Despite the shift, the wavelet
form is changed little.
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The value of € also determines the antenna directivity (Arcone 1995).
Horizontal dipoles on the ground surface show a greater concentration of energy
within the subsurface vertical plane that includes the antenna axis than in the plane
perpendicular to the axis (Figure 46). As € increases, the radiation will become
more confined within the plane containing the antenna axis. This means that the
profiles in this study were mainly sensitive to the ground directly beneath the
transects. The greater width of the pattern perpendicular to the axis (and along the
surveyed transects) shows that the rapid fading observed within diffraction
asymptotes was due to soil attenuation and not radiation directivity.

Figure 47 shows a histogram of the DICON probe permittivities sampled at
depths of 0.1 m and 0.5 m. The histogram shows that the DICON probe
permittivities have higher average values and than those derived from the GPR.
Possible reasons for this difference may be caused by the different testing
frequencies used by the DICON probe (60 MHz) versus the GPR (300 and 600
MHz). Also, permittivities determined using the DICON probe are point samples
whereas, the GPR permittivities are obtained over a larger volume. Table 8 shows
the 40-acre permittivity values obtained from laboratory EM tests, GPR surveys,
and DICON probe measurements. The reported EM laboratory values were
estimated from curves of water content versus real constant at a water content of
25 percent for frequencies ranging between 100 and 1015 MHz. The table shows
that the GPR and laboratory acquired permittivity values agree well. The DICON
probe uses a frequency of 60 MHz which is lower than the frequencies used by the
GPR and laboratory instrumentation. The table shows that the permittivity values
tend to increase with lower frequencies.

Table 8
40-acre Site Permittivities According to
Test Type and Test Frequency
Test Type Frequency, MHz Permittivity
Laboratory 100 13
200 11
495 1"
1015 10
GPR 300 105
600 10.4
DICON probe 60 19.2

80-acre Site

Electrical resistivity soundings

The results of the Schlumberger resistivity soundings conducted at the 80-acre
site are summarized in Figures 48 and 49. Figure 48 shows the results obtained

Chapter 6 Geophysical Test Results and Interpretation
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along north-south Line H whereas Figure 49 shows the results of the data obtained
along east-west Line 13. The interpreted resistivity model indicates a 3-layer model.
The surface layer is thin with an average thickness of about 0.5 m, and relatively
resistive with an average resistivity of about 420 Q-m (2 mS/m) and with a range of
154 t0 996 Q-m (1 to 7 mS/m). This layer is underlain by a layer with a resistivity
ranging between 5 and 78 Q-m (13 to 200 mS/m) and an average resistivity of
about 30 Q-m (33 mS/m). The thickness of this layer varies between 0.4 and 6.4 m
with the average being 2.3 m. The upper 2 layers correspond to silt-clay materials.
The low resistivity layer is probably indicative of an increase in the clay and/or
moisture content. The deepest layer has an interpreted depth ranging between 0.7
and 7.2 m. The average depth to this layer is about 3.2 m. This layer is very
resistive with a resistivity ranging between 574 and 6325 Q-m (less than 2 mS/m)
and a median resistivity of about 700 Q-m (1 mS/m). This layer is interpreted to
correspond with the dolomite/limestone bedrock. The sounding curve and model for
each resistivity sounding are presented in Appendix F.

DICON probe measurements

The results of the DICON probe measurements are presented in Table 9. The
range of values for the relative dielectric permitttivity, conductivity, and wave speed
are 8.7 t0 33.9, 11 to 80.3 mS/m, and 0.052 to 0.102 nv/ns, respectively. The
average values for the relative dielectric permitttivity, conductivity, and wave speed
for the 10 cm depth are 13.8, 17.0 mS/m, and 0.082 m/ns, respectively. The
average values for the relative dielectric permitttivity, conductivity, and wave speed
for the 50 cm depth are 26.8, 51.4 mS/m, and 0.058 m/ns, respectively. These
results are very similar, with the exception of the 50 cm conductivity value, to the
40-acre DICON probe results. Also, the range of conductivity values agree with the
results of the resistivity soundings.

Table 9
DICON Probe Data, 80-acre Site
Relative
Dielectric | Conductivity | Wave Speed
Location Depth, m | Permittivity | mS/m m/ns
H1 0.10 17.3 154 0.072
0.50 33.9 80.3 0.052
H4 0.10 146 20.2 0.079
0.50 26.6 342 0.058
H7 0.10 184 274 0.070
0.50 303 71.1 0.055
H10 0.10 142 135 0.080
0.50 28.8 49.6 0.056
H13 0.10 8.7 11 0.102
0.50 26.9 499 0.058
(Continued)
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Table 9 (Concluded) “
Relative
Dielectric | Conductivity | Wave Speed
Location Depth, m | Permittivity | mS/m m/ns
H16 0.10 16.6 198 0.074
0.50 273 53.8 0.057
H19 0.10 9.9 136 0.095
0.50 246 456 0.060
H22 0.10 113 11 0.089
0.50 254 475 0.060
H26 0.10 10.9 16.2 0.091
0.50 251 44 0.060
A13 0.10 13.7 254 0.081
0.50 27 706 0.058
D13 0.10 125 17.7 0.085
0.50 213 408 0.065
K13 0.10 15.7 15.4 0.076
0.50 283 458 0.056
013 0.10 15.7 14.6 0.076
0.50 236 354 0.062
Average 0.10 138 17.0 0.082
0.50 26.8 51.4 0.058

EM31 surveys

Figures 50 and 51 present the results of the conductivity surveys conducted
along profile Lines H and 13, respectively, at the 80-acre site. The conductivity
values generally range between 10 and 34 mS/m. The average conductivity value
obtained from the DICON probe is slightly higher than the average value obtained
from the EM31. The conductivity values vary considerably along Line H and have
an average value of approximately 20 mS/m. The conductivity values along Line 13
show a general increase from approximately 10 mS/m to 26 mS/m from east to
west. The inphase results for Lines H and 13 are shown in Figures 52 and 53,
respectively. Both inphase profile lines show considerable variability across the
site. Since the inphase readings are sensitive to metallic objects it is possible that
the high degree of variability in the inphase values may be caused by the large
amount of buried metal at the site.

1-hectare Site

The data presented include electrical resistivity sounding data, electrical
conductivity and inphase data collected in the vertical dipole mode, magnetic total
field data, GPR profile data, and DICON probe measurements. The resistivity data
are displayed as log-log plots of apparent resistivity versus electrode spacing with a
corresponding interpreted resistivity versus depth profile; conductivity and
magnetometer data are presented as contour plots; GPR data are shown as profiles

Chapter 6 Geophysical Test Results and Interpretation
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Figure 48. VES modeling results, Line H (north-south), 80-acre site (Continued)
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with distance along survey line plotted against time and depth (both increasing
downward); DICON probe data are in tabular form giving the measured
conductivity and relative dielectric permittivity, and calculated EM wave velocity.
The resistivity sounding data show general variations in soil resistivity with depth.
Anomalies on the conductivity and magnetic contour plots are identified as areas
that differ significantly in value from the average or background value, and can be
identified by a concentration of contour lines. On the GPR profile plots, anomalous
areas are indicated by an interruption in reflector continuity. Anomaly detection is
dependent not only on the type and size of material and the depth of burial, but also
on the contrast between the soil and buried material.

The GPR data are presented as travel time versus distance along survey line.
The time axis, in nanoseconds, is located on the left side of the plot and depth, in
meters, is on the right. The depth scale is based on a subsurface radar velocity
determined by analysis of the CMP data. There are two aspects of the GPR field
data plot that require some explanation. The first notable feature is the lack of
coincidence between zero time and zero depth (for example, see Figure 54). This
offset is due to the separation of the transmitter and receiver antenna. The first
arrival at the receiver is the reflection from the direct wave traveling from the
transmitter to the receiver, not the reflection from the ground surface. The time
span between zero time and zero depth is the one-way travel time of the direct wave
between the transmitter and the receiver. The second point of initial confusion is the
depth scale, in particular at very shallow depths where the scale is obviously
nonlinear. The depth is determined based on the velocity of the media. Because the
transmitter and receiver antenna are separated by a finite distance and the
transmitted pulse has a lobe-shaped radiation pattern, the ray of the transmitted
pulse that arrives at the receiver does not strike the subsurface interface at normal
incidence, but at an acute angle. The depth scale is corrected for non-normal
incidence of the transmitted ray path.

There are six common features which can often be identified in a GPR record:
continuous reflector, discontinuous reflector, chaotic or disturbed reflection, no
reflection, hyperbolic reflection, and multiple (Figure 54). A continuous reflector
identifies a relatively smooth and uninterrupted boundary, whereas a discontinuous
reflector represents a rough and intermittent boundary. A chaotic reflection is
caused by a disturbance of the subsurface material, such as soil that has been
removed and then backfilled, or rapid deposition. An area of no reflection on the
radar record represents a loss of signal strength caused by a highly conductive or
magnetic material, or system power limitations. In addition, no reflections will be
observed for regions with no discontinuities or abrupt changes in dielectric
properties. Hyperbolic reflection patterns are generated by the radar signal
reflecting off a localized buried object (natural or man-made) as the antenna (which
are located on the surface) pass over the object. A multiple is not a true reflection
surface, but is generated by the transmitted pulse traversing an indirect path
between the transmitter, a given reflection surface, and receiver (reflecting off
multiple internal boundaries prior to reaching the receiver). Multiple reflections can
travel various paths depending on the number of true subsurface reflectors, and the
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travel time of the multiple will always be greater than the reflection travel time of
the true reflector. The reflection characteristics described above are used to
qualitatively interpret the radar record and identify anomalous areas.

The DICON probe data are used to obtain very near surface conductivity data
and to aid in estimating velocities used in presenting the GPR data. The data are
also used an index property indication of spatial variation in EM properties.

Electrical resistivity soundings

Six electrical resistivity soundings were performed. The center of each
sounding and direction of expansion is depicted in Figure 8. Plots of the field data
(Appendix G) suggest a (near surface) three layer earth structure having a high-low-
high resistivity pattern. Graphical results of the inverse modeling are shown in
Figure 55. A three or four layer model best fits the data. When a fourth layer is
present, it has an intermediate resistivity value between the initial high-low. The
upper, high resistivity layer ranges in thickness from 0.2 to 0.8 meters with
resistivity varying between 460 and 880 ohm-m (1-2 mS/m). The middle layer
exhibits little variation in both resistivity, 50-70 ohm-m (14-20 mS/m), and
thickness, 4.2-5.2 m. The lower-most resistive layer is detected at depths of 4.7-5.5
m and ranges in resistivity from 1300 to 9000 ohm-m (<1 mS/m). The three
interpreted layers can be associated with a thin silt layer underlain by a thicker moist
to saturated silt or clayey-silt unit, which overlies limestone bedrock. The estimated
depth to bedrock determined from the resistivity soundings (4.7-5.5 m) is
comparable to the 1.8-6.0 m depth of refusal encountered during soil sampling at
the 40-acre site (PRC Environmental Management, Inc. 1994a).

EM31 surveys

The conductivity data show a general increase in conductivity from north to
south (Figure 56). Average background values range from 15 to 20 mS/m. The
northwest corner and northeast portion of the grid exhibit slightly lower values (11-
15 mS/m). Conductivity values greater than 18 mS/m are found within the
southern half of the survey grid, with values increasing toward the southwest and
southeast corners. The most conductive area exists between (104-118E, 0-10N)
where values exceed 24 mS/m.

Little variation is seen in the inphase data (Figure 57), with typical background
values ranging from 0.4 to 0.8 ppt. Several small, weak and shallow isolated
anomalies are located at (10E, 39N), (14E, IN), (14E, 31N), (14E, 47N),

(16E, 12N), (20E, 31N), and (78E, 14N).

Magnetic surveys
The results of the magnetic survey are presented in Figure 58. A nonlinear filter

was applied to the data to remove spikes caused by spurious noise. The data show
no apparent trends. The magnetic data have a nominal background value of

Chapter 6 Geophysical Test Results and interpretation



53,997 nT with an average variation of £6 nT. Two moderate anomaly highs are
located at (74E,40N) and (102E,32N) and a small low anomaly is located at

(69E, IN).
Ground penetrating radar surveys

Figure 8 shows the location of the GPR profiles. The profile data collected
using the 50, 100, and 200 MHz antennas are given in Appendix H. A velocity of
0.07 m/ns, determined using both the CMP and DICON probe measurements, was
used for estimating depth of investigation. The DICON probe data are tabulated in
Table 10.

An investigation depth of about 3.5 m was obtained with the 50 MHz antenna
(Appendix H). Figure 59 shows a typical profile collected at this site using the
50 MHz antenna. At this frequency, two prominent reflectors are resolved and are
seen to extend across the site along each line profiled. These layers, at depths of
0.5-0.7 m and 1.6-2 m, are continuous and relatively flat. A third layer having a
discontinuous and intermittent reflection boundary is at a depth of approximately
3.2m. A broad, hyperbolic reflection is evident in the east-west profile data
acquired along line 50N at position 88 (Figure 59). This reflection has a calculated
wave velocity of about 0.3 m/ns, that of an EM wave in air, indicating the reflection
is caused by an object located on or above the ground surface.

The 100 MHz profiles (Appendix H) also image the two prominent reflectors
identified in the 50 MHz data. The lower reflector (depth 1.5-2 m) is at the
investigation depth limit for this frequency. The 100 MHz antenna detects a rough,
discontinuous and intermittent reflector located between the other two layers at a
depth of 0.9-1.2 m. A series of small, hyperbolic reflections is observed in profile
line 50N between stations 90-115 at a depth of 1.5 m. Depth of investigation
decreases but resolution of the shallower layers improves at the higher antenna
frequencies. This is seen in a comparison of the 50 and 100 MHz profiles along line
115E (Figure 60). Note the uplifting of the reflector at 1.5 m depth between
stations 45-71 in the 50 MHz profile. Greater detail is seen in the 100 MHz profile
at this location, where small, sharp hyperbolic reflections from individual sources
can be identified.

An approximate depth of investigation of 1 m was obtained with the 200 MHz
antenna. The roughness of the shallow soil boundaries can be seen in the data
(Appendix H). The shallowest reflector imaged is at a depth of 0.3-0.4 m; two
deeper layers are seen at 0.8 m and 0.9 m depth. An anomaly is apparent in the 60E
profile line at position 64 and at a depth of 1.0 m (Figure 61).
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Table 10
DICON Probe Data, 1-hectare Site
Relative Dielectric | Conductivity Wave Speed
Location Depth, m Permittivity mS/m m/ns
10E, 30N 0.10 23 15.4 0.062
0.30 239 277 ' 0.061
0.50 250 289 0.060
10E, 55N 0.10 175 88 0.072
0.30 19.1 185 0.069
0.50 280 40.6 0.057
10E, 85N 0.10 139 6.4 0.061
0.30 146 76 0.079
0.50 246 296 0.061
60E, 30N 0.10 217 114 0.064
0.30 27 14.2 0.063
0.50 247 245 0.060
60E, 5SN 0.10 19.0 96 0.069
0.30 199 151 0.067
0.50 23 23.2 0.064
60E, 85N 0.10 19.9 9.7 0.067
0.30 20.1 16.0 0.067
0.50 27.0 343 0.058
115E, 30N 0.10 21.0 154 0.066
0.30 277 349 0.057
0.50 28.0 406 0.057
115E, 55N 0.10 254 16.2 0.060
0.30 26 254 0.063
0.50 267 29.2 0.058
115E, 85N 0.10 216 129 0.065
0.30 231 16.1 0.062
0.50 252 218 0.060
Average 0.10 14.4 11.8 0.067
0.30 215 19.5 0.065
0.50 25.7 30.3 0.059
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Summary and Conclusions from Geophysical
Testing

Geophysical survey results at JPG indicate that similar site conditions exist at
the 40- and 80-acre and 1-hectare sites. The resistivity data generally indicate a
three layer model. The top layer, corresponding to dry silty material, is usually on
the order of 0.5 -1.0 m in thickness with an average resistivity of about 500-600 Q-
m (1-2 mS/m). The second layer is about 4 m thick and has an average range of
resistivities of about 30 to 60 Q-m (17-30 mS/m). This layer probably corresponds
to silty material with increasing percentages of clay and/or moisture. The deepest
layer detected is found at depths ranging between 2 and 7 m. This layer has a
resistivity range of between approximately 600 and 9000 Q-m (<1 to 2 mS/m), but
more typically about 1800 Q-m (1 mS/m). This layer is presumed to correspond
with limestone bedrock. The EM31 derived conductivities for the upper 4-6 m
generally range between about 15 and 25 mS/m and agree with the values from the
resistivity surveys. '

The average dielectric permittivities obtained from the DICON probe at the
three test sites for depths of 0.1 and 0.5 m are 16.2 and 25.6, respectively, and are
slightly higher than the GPR derived dielectric permittivity value of 10.4 obtained at
the 40-acre test site.

The GPR surveys conducted at the 40-acre site using a 300 and 600 MHz
antennas indicate high soil attenuations which agrees with the results of the
laboratory EM tests. The high attenuation limited the depth of investigation to
about 2 m. The dielectric permittivity of about 10 predicts a narrow beam pattern
which means that the GPR antenna would have to be directly above a target in order
to detect it. GPR surveys were conducted at the 1-hectare site using antenna
frequencies of 50, 100, and 200 MHz. The maximum depth of investigation was
about 3.5 m using the 50 MHz antenna.
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7 Summary and Conclusions

This report details the geological, geophysical, environmental and geotechnical
characterization of three UXO test sites at Jefferson Proving Ground, IN. The
purpose of the site characterization is to support:

a. Phase IV demonstrator planning and results assessment,

b. Additional assessments of Phase I-III

¢. Future use of JPG sites,

d. Comparisons of the JPG sites with other UXO and landmine test sites and
cleanup sites.

Laboratory analysis indicate that the soils at the 40- and 80-acre sites are very
similar in terms of classification. The soil samples were collected at depths of 0.10,
0.50 and 1 m depths and all samples , with the exception of one, are classified as
either CH or CL and in general are characterized as clays or sandy clays. Plotted on
a plasticity chart, the soil samples are very near the A-line and exhibit little
plasticity. Average water contents, even under very dry environmental conditions,
show an increase with depth and range from 13.9 percent at a depth of 0.10 cm to
20.3 percent at a depth of 0.10 m. The seven locations from which soil samples
were collected at the 1-hectare site are visually classified as silt with clay and/or
sand or as sandy or silty clay ML and CL.

The samples from the 40- and 80-acre site as mentioned above are characterized
as clays or sandy clays according to the USCS. This classification is based in part
on grain size and not mineralogy. In the USCS, soil particles passing the No. 200
sieve are considered silt or clay. However, in the case of the JPG soils XRD
analysis show that these soils contain little or no clay minerals. The XRD analysis
indicate that these soils consist chiefly of very fine grained (silt or clay-sized) silica
particles. No XRD analysis were performed on the 1-hectare soils. It is presumed
that the 1-hectare soils have a similar mineralogical makeup as those of the 40-acre
site because of their similar soil classifications and proximity.

The general results of the laboratory EM properties show that the dielectric
permittivity of the soil samples collected at the 40- and 80-acre sites are relatively
high, ranging between approximately 10 and 12. The soils also exhibit high signal
attenuation at
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typical field soil water contents. For the 200 MHz test and at typical water content
conditions the attenuation approaches 20 dB/m which is similar to the value for wet
soil conditions. No laboratory EM tests were performed on the 1-hectare site soils.

Geophysical survey results at JPG indicate that similar site conditions exist at
the 40- and 80-acre and 1-hectare sites. The resistivity data generally indicate a
three layer model. The top layer, corresponding to dry silty material, is usually on
the order of 0.5 -1.0 m in thickness with an average resistivity of about 500-600 Q-
m (1-2 mS/m). The second layer is about 4 m thick and has an average range of
resistivities of about 30 to 60 Q-m (17-30 mS/m). This layer probably corresponds
to silty material with increasing percentages of clay and/or moisture. The deepest
layer detected is found at depths ranging between 2 and 7 m. This layer has a
resistivity range of between approximately 600 and 9000 Q-m (<1 to 2 mS/m), but
more typically about 1800 Q-m (1 mS/m). This layer is presumed to correspond
with limestone bedrock. The EM31 derived conductivities for the upper 4-6 m
generally range between about 15 and 25 mS/m and agree with the values from the
resistivity surveys and generally correlate to soil type.

The average dielectric permittivities obtained from the DICON probe at the
three test sites for depths of 0.1 and 0.5 m are 16.2 and 25.6, respectively, and are
slightly higher than the GPR derived dielectric permittivity value of 10.4 obtained at
the 40-acre test site.

The GPR surveys conducted at the 40-acre site using a 300 and 600 MHz
antennas indicate high soil attenuations which agrees with the results of the
laboratory EM tests. The high attenuation limited the depth of investigation to
about 2 m. The dielectric permittivity of about 10 predicts a narrow beam pattern
which means that the GPR antenna would have to be directly above a target in order
to detect it. GPR surveys were conducted at the 1-hectare site using antenna
frequencies of 50, 100, and 200 MHz. The maximum depth of investigation was
about 3.5 m using the 50 MHz antenna. An EM velocity of 0.7 m/ns was used for
depth estimations.
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- Introduction

This report contains dielectric property measurement results for soils. The original data were
collected in the form of the real and imaginary parts of the complex dielectric constant versus frequency
utilizing a Hewlett-Packard 8510C Vector Network Analyzer System with an S-Parameter Test Set and a
coaxial sample holder. Software developed at the U.S. Army Engineer Waterways Experiment Station was
used to convert S-parameter measurements at selected frequencies into a complex dielectric constant. The
soils were assumed to be nonmagnetic. Other useful electromagnetic properties were calculated from the
dielectric constant and frequency, including an equivalent electrical conductivity, the loss tangent, power
attenuation, and a normalized phase velocity. The section entitled, “Fundamental Relationships,” contains
the formulae used to calculate these properties. Additional physical parameters of the soil samples that are
included in the report include their dry density, volumetric moisture content, and temperature.

Measurement results and calculated parameters are listed and/or graphically displayed either as a
function of frequency for representative soil samples or as a function of volumetric moisture content at
selected frequencies. The intent of presenting data in the latter way is to demonstrate the experimental
observation that the real part of the dielectric constant, as well as the normalized phase velocity are strong
functions of volumetric moisture and reasonably independent of soil texture. Other parameters are clearly
dependent on soil texture, and, given enough data from several different types of soils, their graphs versus
moisture content would show a great deal of scatter. The four frequencies chosen for data presentation span
the range of frequencies normally associated with ground penetrating radars.

For additional details on how the data were collected, please contact the author at the U.S. Army
Engineer Waterways Experiment Station (WES), Vicksburg, MS, (voice: 601-634-2855, FAX: 601-634-
2732, e-mail: curtisj@ex 1.wes.army.mil).

Source of Soil Samples

Soil samples were obtained from two test areas at Jefferson Proving Ground, IN, by Dr. Paul Wolfe,
Department of Physics and Geological Sciences, Wright State University, Dayton, OH, and several of his
graduate students during the early part of August, 1997. Samples were drawn out of an auger device at
depths of about 10 cm, 50 cm and 100 cm below the surface from numerous holes at the test sites, one site
being referred to as the 40 Acre Site and the other as the 80 Acre Site. 40 samples in sealed plastic bags were
provided to this laboratory.

Experimental Procedures

The experimental procedure used to collect electrical property data at WES normally consists of the
following steps. First of all, soil is taken from the source container and packed into a brass coaxial sample
holder using small spoons and other utensils. The holders used in these measurements have a square cross
section whose dimension is 0.75 cm and are either 5 cm or 10 ¢m in length, resulting in total sample volumes
of about 2.88 cm® and 5.78 cm?, respectively. These volumes were measured by filling the sample holders
with water, noting the mass increase, and using a mass density of 1 g/cc. The samples are packed as tightly
as possible at whatever moisture content they retained in the bags. Hence, there is no control over sample dry
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density. It is highly unlikely, however, that the densities achieved by this sample preparation technique will
ever exceed in situ densities.

After enclosing the sample in the holder with a brass cover plate, the holder is placed in a
temperature control device and connected to the S-parameter test set. After the sample has reached the
desired temperature, data are collected over the selected range of frequencies. Following removal of the
sample holder from the temperature control apparatus, the cover plate is removed, and the sample is allowed
to air dry (usually for a twenty-four hour period). After the collected of a second set of data at nominally-dry
conditions, the sample is wetted to near saturation by the careful addition of distilled, deionized water. After
allowing some time for the added moisture to fully penetrate the soil structure (usually about an hour), the
electrical properties are once again measured. Therefore, each sample is tested three times, once as is, once
after air drying, and once at near-saturation conditions. The addition of water would not work for a sample
that contained a large amount of swelling clay minerals, as the sample would expand too far out of the sample
holder to allow a measurement to be made. Similarly, such samples crack severely when dried.

Sample masses are recorded prior to each measurement. Following the last data collection, the soil is
scraped and flushed from the sample holder and dried in an oven to obtain its dry mass, which, by virtue of
knowing the sample volume, leads to the sample dry density and the calculation of sample volumetric
moisture contents for each measurement. Of course, these data can also be used to calculate the commonly
used weight-based moisture content as well.

Fundamental Relationships

Assuming plane harmonic wave propagation in a lossy, non-magnetic, unbounded medium, the wave
amplitude function may be written:

e Koo - o)

where
k =B +ic =wN/c
is the complex propagation constant,
B is the phase constant,
o is the amplitude attenuation factor,
w is the radial frequency,
N is the complex index of refraction,
2
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c is the velocity of light in a vacuum,

1 is the symbol designating an imaginary quantity = /-1 ,

x is a space coordinate, and
t is time.
Furthermore,

where € is the relative complex dielectric constant, which, along with the electrical conductivity from Ohm's
Law, represents the electrical properties of the medium. The interpretation of these properties as used in this
study is that the conductivity, 0, accounts for current due to free charged particle motion, while the imaginary
part of the complex dielectric constant, €”’, accounts for displacement current losses (those due to the electric
polarization of the medium). When both conduction and displacement currents are considered, one finds two

users preferring to deal with the concept of electrical conductivity. In MKS units, the relationship between
the two quantities is taken to be

where the units of conductivity are mhos/meter (or siemens/meter) and €, is the permittivity of free space
(8.85x10™2 farads/meter).

Squaring the expression for the complex propagation constant, substituting the expression for the
square of the complex index of refraction, and equating real and imaginary components, one obtains two
algebraic equations that relate the amplitude attenuation factor and phase constant to the complex dielectric

constant:
2
©
Bz - o? = e’
o2

and

Solving these equations for the amplitude attenuation factor and for the phase constant results in the
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following expressions:
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The €"//€’ ratio is also referred to as the loss tangent. Some researchers prefer to work with the electrical
conductivity in place of the dielectric loss term.

Monochromatic plane waves will propagate with a velocity

)
=9 . _el + _.G” i +
T p i C[ 2 ( 1 ( G/J 1 J ]

This phase velocity is not necessarily the speed with which the energy of an electromagnetic wave containing
a range of frequency components propagates through a medium. The latter is referred to as the group velocity
and can be calculated as the rate of change of radial frequency with respect to the phase constant. However,
as long as the phase velocity is relatively constant over the range of frequencies of interest, then there is little
difference between phase velocity and group velocity.

The power intensity of the plane electromagnetic wave decreases exponentially with depth of

penetration by the factor, 2, or, in one unit of distance traveled, a decrease of €2*. Power attenuation
expressed in decibels per meter can then be written as:

PL = -86859 &

Theoretical Loss Tangent Effects

The design of a ground-penetrating radar data collection effort and subsequent analysis of those data
would require estimates of the speed with which a radar signal will propagate through the terrain and the rate
at which the power level of the signal will be attenuated. The former provides the locations of subsurface
anomalies, while the latter controls the depth to which meaningful data can be collected.
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Many designers and analysts choose to assume that the material through which an electromagnetic
wave is propagating is relatively lossless. The first figure that follows is a plot of normalized phase velocity
(We) for selected values of the real part of the complex dielectric constant (often referred to as the permittivity
of the material) against values of the loss tangent. The permittivity values easily span the range of values
found in most soils. The figure clearly demonstrates that as long as the loss tangent is relatively small (say,
less than 0.5), the lossless material assumption is a good one. However, a loss tangent of 1.0, which is not
uncommon, will result in a phase velocity that is about ten percent smaller than that calculated from the

lossless assumption.

As for signal power attenuation, obviously the lossless material assumption is meaningless. One can
see from the second plot that follows that the rate at which the power level of an electromagnetic wave
decreases when traveling through the soil is very sensitive to the value of the loss tangent and to the
frequency at which the signal is being propagated.

5
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Observations on Data

The following pages contain a sample of the electrical property data gathered in this study. They
include tables and charts in which properties are displayed as a function of frequency for individual samples,
as a function of volumetric moisture for all samples at selected frequencies, and also as a function of
volumetric moisture for which sample depth is highlighted.

Frequency Dependence

Data plotted vs frequency for two samples that bound the observed behaviors of JPG soils are shown
in this section. The label on the first sample, JPG_80_013_0.1_D, indicates that it was obtained at a depth
of 10 cm (0.1 meters) from the 80 Acre Site at a location identified as O13. Furthermore, the “D”
designation means that this sample had been air-dried before data were collected. If the sample identifier had
included a “W” instead of “D”, this would indicate that the sample had been wetted to near-saturation
conditions before testing. No letter designation as the end of the identifier means that the soil came straight
from the sample bag. Other information on the first set of graphs reveal that the volumetric moisture for
JPG_80_O13_0.1_D was computed to be 3.2%, and its dry density was calculated as 1.143 g/cc. Plot labels
and legends should make the data self-explanatory.

The apparent anomalous behavior at about 950 MHZ and at other later frequencies is actually*due to
a resonant condition existing within the sample holder. Such conditions exist whenever there are a multiple
of half wavelengths being supported in the sample. The complex algebra calculations, particularly for the
imaginary part of the complex dielectric constant, become somewhat unstable for low-loss materials such as
this sample. Given a permittivity of about 2.6 and a frequency of 950 MHZ, the resulting wavelength in this
sample is about 19.5 cm, and the sample holder used for these measurements had an effective length of about
9.9 em. Therefore, at this frequency, a half wavelength was being sustained. Obviously, since the other
electrical properties are all a function of the imaginary component of the dielectric constant, they too will
exhibit some instability.

Frequency-domain data from another sample, JPG_80_H13_1.0, are shown next. This was a soil
that was very moist and sticky and, when air dried, showed some cracking, indicating the possible presence of
swelling clay minerals. The volumetric moisture content of this sample, 33.7%, is the moisture content of the
field sample; no water was added prior to measurements. This soil is clearly not a low-loss material; one
doesn’t see the apparent anomalous behavior which, for this sample, should first appear at about 300 MHZ.
Furthermore, this sample shows the classical low-frequency conduction current loss mechanism as evidenced
by the straight line plot of the imaginary component of the complex dielectric constant when plotted on a log-
log scale. Had data been collected at higher frequencies, the displacement current loss mechanism (dipole
relaxation of the free water molecules) would have been evident as a hump on the imaginary component
graph centered at about 18 GHz.

Care should be taken in comparing the measured and calculated properties for these two samples.
Note that the vertical scales may be different for the two in order that the data can best be visualized.
Nevertheless, these data clearly demonstrate how different the electrical behavior of soils can be at one site
due to differences in chemistry, moisture content and sample density. For example, consider a mid-range
GPR frequency of 500 MHZ. Attenuation of signal power for the wet, sticky sample is about 80 dB/meter;
whereas, for the dry, near-surface sample it is only about 3 dB/meter. Similarly, monochromatic wave speed
for the wet sample is about 25% of the speed of light; whereas, the dry sample speed is about 65% of the

8
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speed of light. Obviously, this is useful informati_on for system designers and data processors.
Moisture Dependence at Selected Frequencies

Another format used to display these data is to plot results versus moisture content at selected
frequencies. The frequencies chosen for this report are 100, 200, 495, and 1015 MHZ, and were chosen to be
representative of the normal operating frequencies of ground penetrating radar systems.

At each frequency, the data are presented in the following way. First of all, one will find a table of
measured and calculated parameters. The first column of each page provides the location and depth code,
while the second column lists the volumetric moisture content (in percent) of that particular sample. The

equivalent conductivity (in mhos per meter), the loss tangent, the power attenuation factor in decibels per
meter, and the normalized phase velocity.

Each table is followed by several plots of parameters versus volumetric moisture, Experience from
previous data collection efforts with many different types of soils has shown that the permittivity and the
normalized phase velocity are very strong functions of volumetric moisture and virtually independent of soil

The data also show that loss terms are not site-independent. This is most evident at the lower
frequencies and can clearly be seen on the dielectric constant imaginary component graphs. Cross-checking
the tabulated values shows that the high-loss soils come from the 80 Acre Site at a depth of one meter. The
graphs of properties in which data are labeled according to which test site they came from are followed by
two other sets of graphs, one from the 40 Acre Site and one from the 80 Acre Site in which the data are
labeled according to sample depth. They further confirm that something is quite different about the 80 Acre,
one meter depth sample response. This report does not attempt to explain this anomalous behavior. Suffice
it to say that while previous studies have shown that dry density plays some part in controlling the
electromagnetic response of soils, it is most likely that soil chemistry is the overriding factor in determining
the losses in moist soils.
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Data Tables and Graphs
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JPG_80_013 0.1 D
20 deg C, Mv =3.2% 1.143 g/cc (dry)
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JPG_80_013 0.1 D
20 deg C, Mv = 3.2%, 1.143 g/cc (dry)
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20 deg C, Mv = 3.2%, 1.143 g/cc (dry)

JPG_80_013_0.1 D
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JPG_80_H13_1.0
20 deg C, Mv = 33.7%, 1.693 g/cc (dry)
100
§ o %%‘Q’““‘“ _.
L2
c R
3 10 e
2 oy
o
Q0
@] .
o 1
> .
5 = Real ° Imaginary
©
o
0.1
0.01 0.1 1 10
Frequency - GHz

Appendix C Laboratory Dielectric Soil Properties: 40- and 80-acre Sites

C17




JPG_80_H13_1.0 ]
20 deg C, Mv = 33.7%, 1.693 g/cc (dry)
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JPG_80_H13 1.0
20 deg C, Mv = 33.7%, 1.693 g/cc (dry)
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JPG, Phase IV, 40 Acre Site , 100 MHz

Sample

JPG_40_C1_0.1

JPG_40_C1_0.1.D
JPG_40_C1_0.1_ W
JPG_40_C1_0.5

JPG_40_C1_0.5 D
JPG_40_C1_0.5 W
JPG_40_C1_
JPG_40_C1_
JPG_40_C1_

JPG_40_C13_0.1
JPG_40_C13_0.1_
JPG_40_C13_0.1_
JPG_40_C13_0.5
JPG_40_C13_0.5_
JPG_40_C13_1.0
JPG_40_C13_1.0_
JPG_40_C13_1.0_
JPG_40_G1_0.1

JPG_40_G1_0.1.D
JPG_40_G1_0.1 W
JPG_40_G1 05

JPG_40_G1_0.5 D
JPG_40_G1_0.5_ W
JPG_40_G1_1.0

JPG_40_G1_1.0.D
JPG_40_G1_1.0 W
JPG_40_G7_0.1

JPG_40_G7_0.1_D
JPG_40_G7_0.1_W
JPG_40_G7_0.5

JPG 40 G1 3_0.1
JPG_40_G13_0.1_
JPG_40_G13_0.1_
JPG_40_G13 05
JPG_40_G13_0.5_.
JPG_40_G13_0.5_

C20

Vol Moist Dry Dens

(%)

11.31
3.17
47.20
25.21
4.81
39.52
26.42
5.50
38.01
18.06
4.55
40.69
29.10
3.88
34.76
27.08
5.00
31.70
14.39
3.13
41.40
16.64
45.31
22.51
3.70
32.73
16.84
5.28
53.37
25.14
5.14
41.22
30.59
4.69
32.80
16.35
3.13
45.54
21.87
3.32
36.30
27.28
5.38
38.51
13.96
3.01
44.65
22.39
3.63
35.29

(g9/cc)

1.197
1.197
1.197
1.401
1.401
1.401
1.512
1.512
1.512
1.421
1.421
1.421
1.547
1.547
1.547
1.634
1.634
1.634
1.359
1.359
1.359
1.377
1.377
1.524
1.524
1.524
1.126
1.126
1.126
1.440
1.440
1.440
1.621
1.621
1.621
1.339
1.339
1.339
1.494
1.494

1.494.

1.599
1.599
1.599
1.271
1.271
1.271
1.560
1.560
1.560

Re(eps)
(rel)

5.02
2,74
28.87
13.21
4.04
24.39
14.10
4.36
23.65
8.03
3.14
22.62
16.27
3.99
20.09
16.11
4.38
18.75
6.89
3.06
22.28
7.14
27.79
12.86
4.10
19.59
5.63
2.63
30.62
10.84
3.70
25.35
19.08
4.63
18.82
6.74
2.91
25.92
12.16
3.77
21.99
16.12
4.49
22.51
5.74
2.75
25.37
12.59
4.05
20.40
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Im(eps)
(rel)

0.73
0.16
3.02
5.04
0.64
8.03
5.27
0.76
7.88
1.29
0.20
2.63
5.36
0.58
6.16
5.94
0.70
6.66
1.36
0.24
3.22
2.00
5.82
5.28
0.79
6.98
0.83
0.16
2.95
2.93
0.54
5.65
6.39
0.79
5.65
0.98
0.18
2.78
3.39
0.45
5.03
6.65
0.86
8.19
0.84
0.19
2.62
3.79
0.58
5.14

Cond Loss Tan

(mho/m)

0.0041
0.0009
0.0168
0.0280
0.0036
0.0446
0.0293
0.0042
0.0438
0.0071
0.0011
0.0146
0.0298
0.0032
0.0342
0.0330
0.0039
0.0370
0.0076
0.0013
0.0179
0.0111
0.0324
0.0294
0.0044
0.0388
0.0046
0.0009
0.0164
0.0183
0.0030
0.0314
0.0355
0.0044
0.0314
0.0055
0.0010
0.0155
0.0189
0.0025
0.0280
0.0370
0.0048
0.0455
0.0047
0.0010
0.0145
0.0211
0.0032
0.0286

0.146
0.058
0.105
0.381
0.159
0.329
0.374
0.175
0.333
0.160
0.064
0.116
0.329
0.146
0.307
0.369
0.160
0.355
0.197
0.079
0.145
0.280
0.210
0.411
0.192
0.356
0.147
0.061
0.096
0.270
0.145
0.223
0.335
0.171
0.301
0.146
0.061
0.107
0.279
0.118
0.229
0.413
0.193
0.364
0.147
0.069
0.103
0.301
0.144
0.252

Attn
(dB/m)

297
0.88
5.1
12.39
2.90
14.59
12.55
3.32
14.55
4.11
1.03
5.02
11.93
2.65
12.36
13.24
3.04
13.78
4.69
1.25
6.19
6.75
10.00
13.14
3.52
14.12
3.17
0.90
4.84
8.02
2.53
10.15
13.12
3.33
11.73
3.43
0.94
4.97
8.77
2.09
9.70
14.77
3.69
15.45
3.19
1.04
4.72
9.62
2.63
10.27

Ph Vel
(rel)

0.445
0.604
0.186
0.270
0.496
0.200
0.262
0.477
0.203
0.352
0.564
0.210
0.245
0.499
0.221
0.245
0.476
0.228
0.379
0.571
0.211
0.371
0.189
0.273
0.492
0.223
0.420
0.616
0.181
0.301
0.518
0.197
0.226
0.463
0.228
0.384
0.586
0.196
0.284
0.514
0.212
0.244
0.470
0.208
0.416
0.603
0.198
0.279
0.495
0.220
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JPG_40_G13_1.0
JPG_40_G13_1.0_|
JPG_40_G13_1.0_
JPG_40_K1_0.1
JPG_40_K1_0.1_D
JPG_40_K1_0.1_W
JPG_40_K1_0.5
JPG_40_K1_0.5_D
JPG_40_K1_0.

D
w

JPG_ 40 K13 _0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_1.
JPG_40_K13_1.
JPG_40_K13_1.

27.49
4.39
32.60
16.49
4.65
43.58
32.12
6.28
36.18
13.85
4.83
48.72
26.59
5.78
38.67
13.33
4.62
52.08
20.73
4.76
48.65
25.73
5.42
40.31

1.673
1.673
1.673
1.217
1.217
1.217
1.467
1.467
1.467
1.228
1.228
1.228
1.447
1.447
1.447
1.185
1.185
1.185
1.266
1.266
1.266
1.516
1.516
1.516

17.20
4.70
19.78
6.70
2.88
23.66
19.34
4.70
21.31
6.49
3.31
29.16
14.97
4.64
25.49
4.74
2.7
29.15
8.03
3.29
30.57
13.86
4.36
24.35

6.94

0.91 .

7.28
0.94
0.18
2.56
8.39
0.90
8.23
1.63
0.37
5.16
6.80
1.12
10.29
0.85
0.19
3.95
2.38
0.47
7.72
5.79
0.77
8.92

Appendix C Laboratory Dielectric Soil Properties: 40- and 80-acre Sites

0.0386
0.0050
0.0405
0.0052
0.0010
0.0142
0.0467
0.0050
0.0458
0.0090
0.0021
0.0287
0.0378
0.0062
0.0572
0.0047
0.0011
0.0218
0.0132
0.0026
0.0430
0.0322
0.0043
0.0496

0.404
0.193
0.368
0.141
0.063
0.108
0.434
0.182
0.386
0.251
0.113
0.177
0.454
0.242
0.404
0.179
0.071
0.135
0.296
0.142
0.253
0.418
0.177
0.366

14.94
3.79
14.65
3.30
0.98
4.77
16.98
3.76
15.93
5.76
1.87
8.67
15.61
4.70
18.19
3.53
1.07
6.63
7.56
2.34
12.61
13.86
3.36
16.18

0.237
0.459
0.221
0.386
0.589
0.205
0.222
0.459
0.213
0.389
0.549
0.185
0.252
0.461
0.194
0.457
0.607
0.185
0.349
0.550
0.180
0.263
0.477
0.199
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JPG, Phase IV, 80 Acre Site , 100 MHz

Sample

JPG_80_A13_0.1
JPG_80_A13_0.1_D
JPG_80_A13_0.1_W
JPG_80_A13_0.5
JPG_80_A13_0.5_
JPG_80_A13_ 0.5
JPG_80_A13_1.0
JPG_80_A13_1.0_
JPG_80_A13_1.0
JPG_80_H1_0.1
JPG_80_H1_0.1_D
JPG_80_H1_0.1_
JPG_80_H1_0.
JPG_80_H1_0.
JPG_80_H1_0.
1.
1.
1

D
_W
D
_W

JPG_80_H1

JPG_80_H1

JPG_80_H1

JPG_80_H13_0.
JPG_80_H13_0.
JPG_80_H13_0.
JPG_80_H13_0.
JPG_80_H13_0.
JPG_80_H13 0.
JPG_80_H13_1.
JPG_80_H13_1.
JPG_80_H13_1.
JPG_80_H26_0.1~
JPG_80_H26_0.1_
JPG_80_H26_0.1_
JPG_80_H26_0.5
JPG_80_H26_0.5_
JPG_80_H26_0.5_
JPG_80_H26_1.0
JPG_80_H26_1.0_
JPG_80_H26_1.0_
JPG_80_013_0.1
JPG_80_O13_0.1_
JPG_80_013_0.1_

JPG_80_013_0.5

JPG_80_013_0.5_D
JPG_80_013_0.5_

JPG_80_013_1.0

JPG_80_013_1.0_D
JPG_80_013_1.0_

C22

Vol Moist Dry Dens Re(eps) Im(eps)

(%)

24.76
5.56
42.47
22.13
4.97
40.67
29.27
6.98
40.59
20.66
5.31
42.81
26.11
7.36
40.90
37.50
9.93
34.10
13.78
7.95
44.20
23.61
6.81
38.19
33.72
10.49
33.54
18.06
4.62
41.04
15.31
6.32
56.01
21.91
6.11
33.92
9.17
3.20
53.65
17.78
4.31
37.29
20.61
6.26
41.90

(g/cc)

1.300
1.300
1.300
1.380
1.380
1.380
1.378
1.378
1.378
1.344
1.344
1.344
1.434
1.434
1.434
1.684
1.684
1.684
1.232
1.232
1.232
1.405
1.405
1.405
1.693
1.693
1.693
1.370
1.370
1.370
1.218
1.218
1.218
1.440
1.440
1.440
1.143
1.143
1.143
1.452
1.452
1.452
1.404
1.404
1.404

(rel)

11.93
3.62
25.48
12.78
4.49
26.49
15.61
4.50
28.50
8.97
3.38
24.29
13.92
4.52
25.50
26.43
7.1
21.53
4.91
3.17
26.03
11.40
4.20
22.76
25.74
8.17
23.06
8.74
3.47
24.55
6.20
3.58
32.83
11.16
4.30
20.13
4.04
2.63
30.73
9.96
3.92
24.10
10.77
4.42
27.93
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(rel)

5.28
0.50
9.96
6.29
1.21
10.92
8.47
1.12
13.79
1.48
0.26
3.31
6.06
0.93
9.97
18.81
2.28
14.25
0.78
0.32
3.16
4.63
0.89
7.49
24.35
3.46
19.85
2.41
0.39
5.22
1.80
0.59
7.67
5.42
0.85
9.67
0.59
0.16
3.40
4.08
0.74

7.94 °

4.95
0.85
11.33

Cond Loss Tan

(mho/m)
0.0294 0.443
0.0028 0.138
0.0554 0.391
0.0350 0.492
0.0067 0.270
0.0607 0.412
0.0471 0.542
0.0062 0.248
0.0767 0.484
0.0082 0.165
0.0014 0.077
0.0184 0.136
0.0337 0.435
0.0052 0.205
0.0554 0.391
0.1046 0.712
0.0127 0.321
0.0792 0.662
0.0043 0.159
0.0018 0.100
0.0176 0.121
0.0257 0.406
0.0049 0.211
0.0416 0.329
0.1354 0.946
0.0192 0.424
0.1104 0.861
0.0134 0.276
0.0021 0.111
0.0290 0.213
0.0100 0.291
0.0033 0.165
0.0427 0.234
0.0301 0.486
0.0053 0.220
0.0538 0.481
0.0033 0.147
0.0009 0.062
0.0189 0.111
0.0227 0.410
0.0041 0.188
0.0442 0.330
0.0275 0.460
0.0047 0.193
0.0630 0.406

Attn
(dB/m)

13.60
2.38
17.63
15.56
5.16
18.92
18.86
475
22.87
4.48
1.28
6.09
14.44
3.94
17.63
31.53
7.68
26.64
3.19
1.61
5.62
12.22
3.92
14.09
40.05
10.78
34.91
7.35
1.88
9.53
6.52
2.82
12.10
14.36
412
18.09
267
0.91
5.57
11.54
3.37
14.53
13.39
3.68
19.13

Ph Vel
(reb)

0.283
0.524
0.195
0.272
0.468
0.191
0.245
0.468
0.182
0.333
0.543
0.202
0.262
0.468
0.195
0.184
0.371
0.206
0.450
0.561
0.196
0.291
0.485
0.207
0.181
0.343
0.193
0.335
0.536
0.201
0.398
0.527
0.173
0.291
0.480
0.217
0.496
0.617
0.180
0.311
0.503
0.201
0.297
0.473
0.186
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Jefferson Proving Ground , Phase IV
Properties at 100 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 100 MHz | Al Depths
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Jefferson Proving Ground , Phase IV
Properties at 100 MHz , All Depths
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Jefferson Proving Ground , Phase IV

Properties at 100 MHz , All Depths
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Jefferson Proving Ground , Phase [V
Properties at 100 MHz , All Depths

Attenuation - dB/m
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Jefferson Proving Ground , Phase IV
Properties at 100 MHz , All Depths
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JPG, Phase IV, 40 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site N
Properties at 100 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site

Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 100 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site

Properties at 100 MHz by Depth
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JPG , Phase IV, 40 Acre Site , 200 MHz

Sample Vol Moist Dry Dens Re(eps) Im(eps) Cond Loss Tan Attn  Ph Vel

(%) (g/cc) (rel) (rel) (mho/m) (dB/m) (rel)
JPG_40_C1_0.1 11.31 1.197 4.83 0.51 0.0057 0.106 424 0.454
JPG_40_C1_0.1_D" 3.17 1.197 2.69 0.13 0.0015 0.049 145 0.609
JPG_40_C1_0.1_W 47.20 1.197 28.36 240 0.0267 0.085 8.20 0.188
JPG_40_C1_0.5 25.21 1.401 11.92 3.26 0.0363 0.274 17.03 0.287
JPG_40_C1_0.5 D 4.81 1.401 3.82 0.51 0.0057 0.134 474 0.510
JPG_40_C1_0.5 W 39.52 1.401 2242 5.33 0.0593 0.238 20.33 0.210
JPG_40_C1_1.0 26.42 1.512 12.84 3.39 0.0377 0.264 17.08 0.277
JPG_40_C1_1.0.D 5.50 1.512 413 0.58 0.0065 0.141 5.20 0.491
JPG_40_C1_1.0.W 38.01 1.512 21.75 5.11  0.0568 0.235 1980 0.213
JPG_40_C7_0.1 18.06 1.421 7.77 0.87 0.0096 0.112 565 0.358
JPG_40_C7_0.1_D 4.55 1.421 3.08 0.16 0.0018 0.054 171 0.570
JPG_40_C7_0.1_W 40.69 1.421 22.15 1.84 0.0204 0.083 7.09 0212
JPG_40_C7_0.5 29.10 1.547 14.96 3.53 0.0392 0.236 16.48 0.257
JPG_40_C7_0.5D 3.88 1.547 3.80 0.46  0.0052 0.122 433 0.512
JPG_40_C7_05 W 34.76 1.547 18.61 4.06 0.0451 0.218 17.01 0.231
JPG_40_C7_1.0 27.08 1.634 14.74 3.84 0.0427 0.260 18.04 0.258
JPG_40_C7_1.0_D 5.00 1.634 4.18 0.55 0.0061 0.132 4.89 0.488
JPG_40_C7_1.0_W 31.70 1.634 17.24 430 0.0478 0.249 18.68 0.239
JPG_40_C13 0.1 14.39 1.359 6.55 0.92 0.0102 0.140 6.50 0.390
JPG_40_C13_0.1_D 3.13 1.359 3.00 0.19 0.0021 0.064 202 0.577
JPG_40_C13_0.1_W 41.40 1.359 21.55 2.01 0.0223 0.093 7.86 0.215
JPG_40_C13_0.5 16.64 1.377 6.65 1.34 0.0149 0.201 940 0.386
JPG_40_C13 0.5 W 45.31 1.377 26.42 3.94 0.0438 0.149 13.90 0.194
JPG_40_C13_1.0 22.51 1.524 11.58 3.43 0.0381 0.296 18.14 0.291
JPG_40_C13_1.0.D 3.70 1.524 3.86 0.59 0.0066 0.154 5.49  0.507
JPG_40_C13_1.0.W 32.73 1.524 17.88 462 0.0514 0.259 19.72 0.235
JPG_40_G1_0.1 16.84 1.126 5.52 0.58 0.0064 0.105 448 0425
JPG_40_G1_0.1_D 5.28 1.126 2.61 0.13 0.0014 0.049 143 0.618
JPG_40_G1_0.1_wW 53.37 1.126 30.38 2.27 0.0253 0.075 7.50 0.181
JPG_40_G1_0.5 25.14 1.440 10.15 1.99 0.0221 0.196 11.32 0.313
JPG_40_G1_0.5_D 5.14 1.440 3.54 0.41  0.0046 0.117 401 0.531
JPG_40_G1_0.5 W 41.22 1.440 24.00 3.98 0.0442 0.166 1471 0.203
JPG_40_G1_1.0 30.59 1.621 17.55 409 0.0455 0.233 17.66 0.237
JPG_40_G1_1.0_D 4.69 1.621 4.37 0.62 0.0069 0.142 5.39 0477
JPG_40_G1_1.0.W 32.80 1.621 17.39 3.82 0.0425 0.220 16.57 0.238
JPG_40_G7_0.1 15.35 1.339 6.52 0.67 0.0075 0.103 479 0.391
JPG_40_G7_0.1_D 3.13 1.339 2.88 0.15 0.0016 0.050 1.56 0.589
JPG_40_G7_0.1_W 45.54 1.339 25.43 203 0.0225 0.080 7.30 0.198
JPG_40_G7_0.5 21.87 1.494 11.34 222 0.0247 0.196 1194 0.296
JPG_40_G7_0.5_D 3.32 1.494 3.60 0.36 0.0040 0.101 3.47 0.526
JPG_40_G7_0.5_ W 36.30 1.494 20.77 3.39 0.0376 0.163 1347 0.219
JPG_40_G7_1.0 27.28 1.599 14.61 422 0.0470 0.289 19.90 0.259
JPG_40_G7_1.0_D 5.38 1.599 4.24 0.64 0.0071 0.152 5.66 0484
JPG_40_G7_1.0_W 38.51 1.599 20.60 523 0.0581 0.254 20.79 0.219
JPG_40_G13_0.1 13.96 1.271 5.56 0.57 0.0064 0.103 442 0423
JPG_40_G13_0.1_D 3.01 1.271 2.70 0.14 0.0015 0.051 1.51 0.609
JPG_40_G13_0.1_W 44 .65 1.271 2498 224 0.0250 0.090 8.16 0.200
JPG_40_G13 0.5 22.39 1.560 11.68 248 0.0276 0.213 13.14 0.291
JPG_40_G13_0.5_D 3.63 1.560 3.86 0.45 0.0050 0.116 416 02508

JPG_40_G13_0.5_W 35.29 1.560 19.16 3.43 0.0381 0.179 1419 0.228
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JPG_40_G13_1.

0
JPG_40_G13_1.0_
.0

JPG_40 G13 1

JPG_40_K1_ 0.1

JPG 40 _K1_0.1
JPG_40_K1_0.1
JPG_40_K1_0.5
JPG_40_K1_0.5
JPG_40_K1_0.5_

JPG_40_K7
JPG_40_K7
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG 40 K13_0.
0.
_0.
1.
1.
1.

1
01
_0.1_
JPG_ 40 _K7 05
_0.5
0.

JPG_40_K13_
JPG_40_K13
JPG_40_K13_
JPG_40_K13_
JPG_40_K13_
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D
w

_D

D
w

27.49
4.39
32.60
16.49
4.65
43.58
32.12
6.28
36.18
13.85
4.83
48.72
26.59
5.78
38.67
13.33
4.62
52.08
20.73
4.76
48.65
25.73
542
40.31

1.673
1.673
1.673
1.217
1.217
1.217
1.467
1.467
1.467
1.228
1.228
1.228
1.447
1.447
1.447
1.185
1.185
1.185
1.266
1.266
1.266
1.516
1.516
1.516

15.64
4.43
18.10
6.43
2.84
23.13
17.39
4.41
19.32
6.02
3.18
28.11
13.35
4.32
23.03
4.54
2.64
28.49
7.38
3.12
28.56
12.54
4.12
22.27
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4.34
0.67
4.72
0.67
0.16
1.88
5.48
0.71
5.50
1.11
0.29
3.55
4.39
0.83
6.75
0.59
0.16
2.71
1.62
0.37
5.38
3.73
0.60
5.86

0.0483
0.0075
0.0525
0.0074
0.0017
0.0209
0.0609
0.0079
0.0612
0.0124
0.0033
0.0395
0.0488
0.0092
0.0751
0.0065
0.0018
0.0302
0.0180
0.0041
0.0599
0.0415
0.0066
0.0652

0.278
0.152
0.261
0.104
0.055
0.081
0.315
0.162
0.285
0.185
0.092
0.126
0.329
0.191
0.293
0.129
0.061
0.095
0.220
0.119
0.189
0.298
0.145
0.263

19.80
5.79
20.04
4.77
1.68
711
23.61
6.15
22.54
8.21
2.98
12.16
21.56
719
25.33
4.98
1.81
9.23
10.79
3.82
18.25
18.97
5.32
22.41

0.251
0.474
0.233
0.394
0.593
0.208
0.237
0.475
0.225
0.406
0.560
0.188
0.270
0.479
0.206
0.468
0.616
0.187
0.366
0.565
0.186
0.279
+0.492
0.210
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JPG , Phase IV, 80 Acre Site , 200 MHz

Sample

JPG_80_A13_

0.1

JPG_80_A13_0.1.D
JPG_80_A13_0.1_W

JPG_80_A13
JPG_80_A13_
JPG_80_A13_
JPG_80_A13_
JPG_80_A13_
JPG_80_A13_

_0.5
0.

5_|
0.5
1.0
1.0
1.0

JPG_80_H1_0.1
JPG_80_H1_0.1.D
JPG_80_H1_0.1_ W
JPG_80_H1_0.5
JPG_80_H1_0.5 D
JPG_80_H1_0.5_W
JPG_80_H1_1.0
JPG_80_H1_1.0_D
JPG_80_H1_1.0_W

JPG_80_H13_|
JPG_80_H13_
JPG_80_H13
JPG_80_H13_
JPG_80_H13_
JPG_80_H13_
JPG_80_H13_
JPG_80_H13_
JPG_80_H13_
JPG_80_H26_
JPG_80_H26_
JPG_80_H26_
JPG_80_H26_
JPG_80_H26._
JPG_80_H26_
JPG_80_H26_
JPG_80_H26_
JPG_80_H26_
JPG_80_O13_
JPG_80_O13_
JPG_80_013_
JPG_80_0O13_
JPG_80_013_
JPG_80_O13_
JPG_80_O13_
JPG_80_O13_
JPG_80_0O13_

0.
0.
_0.
0.
0.
0.
1.
1
1
0.
0.
0.
0.
0.
0.
1.
1
1

1
1
1
5
5_
5
0
.0_
.0
1
1
1
5
5_
5
0
.0_
.0
0.1
0.1
0.1
0.5
5
5
0
.0_
0

0.
0.
1
1
1.

D
_W
D
w

D
W
D
W
D
_W
D
W
D
_W
D
_W
_D
W
D
w
D
_W

Vol Moist Dry Dens Re(eps)

(%)

24.76
5.56
42.47
22.13
497
40.67
29.27
6.98
40.59
20.66
5.31
42.81
26.11
7.36
40.90
37.50
9.83
34.10
13.78
7.95
44.20
23.61
6.81
38.19
33.72
10.49
33.54
18.06
4.62
41.04
15.31
6.32
56.01
21.91
6.11
33.92
9.17
3.20
53.65
17.78
4.31
37.29
20.61
6.26
41.90

(g/cc)

1.300
1.300
1.300
1.380
1.380
1.380
1.378
1.378
1.378
1.344
1.344
1.344
1.434
1.434
1.434
1.684
1.684
1.684
1.232
1.232
1.232
1.405
1.405
1.405
1.693
1.693
1.693
1.370
1.370
1.370
1.218
1.218
1.218
1.440
1.440
1.440
1.143
1.143
1.143
1.452
1.452
1.452
1.404
1.404
1.404

(rel)

11.07
3.47
24.30
11.34
4.12
24.06
13.58
4.11
25.27
8.63
3.35
23.75
12.50
4.28
23.24
22.73
6.41
18.40
4.73
3.08
2548
10.32
3.94
21.05
21.48
7.18
19.24
8.14
3.37
23.48
5.70
3.39
31.04
9.83
4.00
17.93
3.87
2.56
30.13
8.93
3.72
22.21
9.50
416
25.31

im(eps)
(rel)

3.24
0.39
6.09
4.05
0.89
7.1
5.50
0.86
9.14
1.03
0.21
2.34
3.97
0.71
6.60
11.60
1.65
8.99
0.56
0.23
2.17
3.04
0.65
5.13
14.72
2.41
12.33
1.63
0.32
3.60
1.24
0.46
5.26
3.50
0.73
6.16
0.43
0.14
2.37
2.68
0.56
5.26
3.20
0.64
7.40
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Cond Loss Tan

{mho/m)

0.0360
0.0043
0.0677
0.0450
0.0099
0.0791
0.0612
0.0095
0.1017
0.0114
0.0024
0.0261
0.0442
0.0079
0.0734
0.1290
0.0184
0.1000
0.0062
0.0026
0.0242
0.0338
0.0073
0.0570
0.1637
0.0268
0.1371
0.0182
0.0035
0.0400
0.0138
0.0051
0.0585
0.0389
0.0081
0.0685
0.0048
0.0016
0.0264
0.0298
0.0063
0.0585
0.0356
0.0071
0.0823

0.293
0.112
0.250
0.357
0.215
0.296
0.405
0.208
0.362
0.119
0.064
0.099
0.318
0.165
0.284
0.511
0.257
0.489
0.118
0.076
0.085
0.294
0.166
0.244
0.685
0.336
0.641
0.201
0.094
0.153
0.218
0.136
0.169
0.356
0.182
0.344
0.112
0.056
0.079
0.300
0.152
0.237
0.337
0.154
0.293

Aftn
(dB/m)

17.54
3.79
22.29
21.56
7.90
26.11
26.64
7.63
32.57
6.35
2.12
8.74
20.20
6.20
24.65
4297
11.76
37.11
4.66
2.41
7.82
17.02
5.97
20.18
54.94
16.14
48.90
10.37
3.13
13.46
9.40
4.54
17.10
20.01
6.59
26.10
4.00
1.63
7.86
16.15
5.31
20.16
18.65
5.69
26.50

Ph Vel
(rel)

0.297
0.536
0.201
0.293
0.490
0.202
0.266
0.491
0.196
0.340
0.546
0.205
0.279
0.482
0.205
0.204
.0.392
70.227
0.459
0.569
0.198
0.308
0.502
0.216
0.205
0.368
0.218
0.349
0.545
0.206
0.417
0.542
0.179
0.314
0.498
0.233
0.508
0.625
0.182
0.331
0.517
0.211
0.320
0.489
0.197

C43




40

Real Constant
S b4

-
o
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Properties at 200 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 200 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 200 MHz , All Depths
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Jefferson Proving Ground , Phase IV

Properties at 200 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 200 MHz , All Depths
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Jefferson Proving Ground , Phase IV

Properties at 200 MHz , All Depths
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JPG , Phase |V, 40 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site 7
Properties at 200 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 200 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 200 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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Attentuation - dB/m

JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 200 MHz by Depth
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JPG , Phase IV, 40 Acre Site , 495 MHz

Sample

JPG_40_C1_0.1
JPG_40_C1_0.1_D
JPG_40_C1_ 0.1 W

JPG_40_C1 0.5
JPG_40_C1 0.5 D
JPG_40_C1_0.5_W
JPG_40_C1_1.0
JPG_40_C1_1.0_D
JPG_40_C1_1.0_W
JPG_40_C7_0.1
JPG_40_C7_0.1_D
JPG_40_C7_0.1_W
JPG_40_C7_0.5
JPG_40_C7 0.5 D
JPG_40_C7_0.5 W
JPG_40_C7_1.0
JPG_40_C7_1.0_D
JPG_40_C7_1.0W
JPG_40_C13_0.1
JPG_40_C13_0.1_D
JPG_40_C13_0.1_W
JPG_40_C13_0.5
JPG_40_C13_0.5_W
JPG_40_C13_1.0
JPG_40_C13_1.0_D
JPG_40_C13_1.0 W
JPG_40_G1_0.1

JPG_40_G1_0.4_D
JPG_40_G1_0.1_W
JPG_40_G1_0.5

JPG_40_G1_0.5_D
JPG_40_G1_0.5 W
JPG_40_G1_1.0

JPG_40_G1_1.0.D
JPG_40_G1_1.0W

JPG_40_G7_0.1
JPG_40_G7_0.1_D
JPG_40_G7_0.1_W
JPG_40_G7_0.5
JPG_40_G7_0.5_D
JPG_40_G7_0.5_W
JPG_40_G7_1.0
JPG_40_G7_1.0.D
JPG_40_G7_1.0 W
JPG_40_G13_0.1
JPG_40_G13_0.1_D
JPG_40_G13_0.1_W
JPG_40_G13_ 0.5
JPG_40_G13_0.5 D
JPG_40_G13_0.5 W
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Vol Moist Dry Dens

(%)

11.31
3.17
47.20
25.21
4.81
39.52
26.42
5.50
38.01
18.06
4.55
40.69
29.10
3.88
34.76
27.08
5.00
31.70
14.39
3.13
41.40
16.64
45.31
22.51
3.70
32.73
16.84
5.28
53.37
25.14
5.14
41.22
30.59
4.69
32.80
15.35
3.13
45.54
21.87
3.32
36.30
27.28
5.38
38.51
13.96
3.01
44.65
22.39
3.63
35.29

(g/cc)

1.197
1.197
1.197
1.401
1.401
1.401
1.612
1.512
1.512
1.421
1.421
1.421
1.547
1.547
1.547
1.634
1.634
1.634
1.359
1.359
1.359
1.377
1.377
1.524
1.524
1.524
1.126
1.126
1.126
1.440
1.440
1.440
1.621
1.621
1.621
1.339
1.339
1.339
1.494
1.494
1.494
1.599
1.599
1.599
1.271
1.271
1.271
1.560
1.560
1.560

Re(eps)
(reh)

4.67
263
27.57
11.06
3.59
20.98
11.96
3.91
20.50
7.54
3.00
21.69
13.94
3.58
17.47
13.81
3.94
16.21
6.28
2.92
21.25
6.28
25.55
10.64
3.62
16.51
5.38
2.55
29.96
9.62
3.36
23.09
16.56
4.11
16.34
6.34

- 2.82
25.02
10.72
3.44
19.91
13.59
3.99
19.37
5.40
2.64
2417
10.91
3.67
18.31

Im(eps)
(rel)

0.35
0.11
1.86
1.86
0.38
3.18
1.90
0.41
3.01
0.56
0.13
1.44
2.05
0.33
2.42
212
0.38
2.48
0.57
0.15
1.57
0.76
2.61
1.88
0.40
2.64
0.40
0.12
2.36
1.17
0.30
2.47
2.36
0.45
2.26
0.44
0.12
1.58
1.28
0.27
2.14
2.35
0.45
3.05
0.38
0.11
1.87
1.42
0.32
2.1

Cond Loss Tan

(mho/m)

0.0096
0.0030
0.0511
0.0511
0.0105
0.0875
0.0524
0.0112
0.0830
0.0155
0.0035
0.0397
0.0563
0.0080
0.0666
0.0583
0.0108
0.0682
0.0157
0.0041
0.0432
0.0209
0.0720
0.0518
0.0111
0.0727
0.0111
0.0032
0.0649
0.0322
0.0082
0.0681
0.0651
0.0124
0.0621
0.0121
0.0034
0.0435
0.0354
0.0073
0.0589
0.0646
0.0124
0.0839
0.0106
0.0031
0.0433
0.0390
0.0088
0.0582

0.075
0.041
0.067
0.168
0.106
0.152
0.159
0.104
0.147
0.075
0.043
0.067
0.147
0.092
0.139
0.153
0.100
0.153
0.091
0.051
0.074
0.121
0.102
0.177
0.111
0.160
0.075
0.046
0.079
0.122
0.089
0.107
0.143
0.110
0.138
0.070
0.044
0.063
0.120
0.077
0.108
0.173
0.113
0.157
0.071
0.042
0.065
0.130
0.087
0.116

Attn
(dB/m)

7.29
2.98
15.90
25.07
9.01
31.47
24.69
9.25
29.89
9.22
3.35
13.94
24.61
7.79
26.02
25.58
8.92
27.62
10.21
3.92
15.33
13.62
23.26
25.88
9.49
29.19
7.82
3.31
19.37
16.95
7.32
23.14
26.10
9.99
25.07
7.88
3.30
14.21
17.63
6.45
21.56
28.58
10.17
31.08
7.43
3.08
14.40
19.26
7.52
22.21

Ph Vel
(rel)

0.463
0.616
0.190
0.300
0.527
0.218
0.288
0.505
0.220
0.364
0.578
0.215
0.267
0.528
0.239
0.268
0.503
0.248
0.399
0.586
0.217
0.398
0.198
0.305
0.525
0.245
0.431
0.627
0.183
0.322
0.545
0.208
0.245
0.493
0.247
0.397
0.585
0.200
0.305
0.539
0.224
0.270
0.500
0.227
0.430
0.615
0.203
0.302
0.521
0.233

Appendix C Laboratory Dielectric Soil Properties: 40- and 80-acre Sites

59



JPG_40_G13_1.0 2749 1673 1467 241 00663 0164 2823 0.260
JPG_40_G13_1.0.D 439 1673 416 047 00129 0113 1032 0489
JPG_40_G13_1.0_.W 3260 1.673 1690 272 00747 0.161 2064 0.242
JPG_40_K1_0.1 1649 1217 620 045 00125 0073 822 0401
JPG_40_K1_0.1D 465 1217 276 013 00035 0045 339 0602
JPG_40_K1_0.1_W 4358  1.217 2265 138 0.0379 0061 13.02 0210
JPG_40_K1_0.5 3212 1467 1595 3.8 0.0875 0199 3565 0249
JPG_40_K1_0.5 D 6.28 1467  4.09 051 0.0142 0126 1143 0493
JPG_40_K1_0.5_W 36.18 1467 17.74 335 0.0922 0.189 3564 0236
JPG_40_K7_0.1 13.85 1228 565 068 0.0188 0121 1294 0420
JPG_40_K7_0.1.D 483 1228 305 020 0005 0.067 524 0573
JPG_40_K7_0.1_W 4872 1228 2726 265 0.0729 0097 2282 0191
JPG_40_K7_0.5 2659  1.447 1222 246 00677 0201 3150 0.285
JPG_40_K7_0.5_D 578 1447 401 056 0.0153 0139 1247 0.498
JPG_40_K7_0.5_ W 3867 1447 2124 388 01067 0.183 37.71 0216
JPG_40_K13_0.1 13.33 1185 436 037 0.0102 0085 8.01 0479
JPG_40_K13_0.1_D 462 1185 254 013 00035 0.051 363 0627
JPG_40_K13_0.1_W 5208 1185 2823 210 00578 0074 1778 0188
JPG_40_K13_0.5 2073 1266  6.86 092 00253 0134 1578 0381
JPG_40_K13_0.5_D 476 1266 295 025 00069 0.085 660 0582
JPG_40_K13_0.5_W 4865 1.266 2714 329 0.0906 0121 2839 0192
JPG_40_K13_1.0 2573 1516 1147 206 00566 0179 27.24 0294
JPG_40_K13_1.0_D 542 1516 387 041 00114 0107 948 0.508
JPG_40_K13_1.0_W 4031  1.516 2079 342 0.0941 0464 3365 0219
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JPG, Phase IV, 80 Acre Site , 495 MHz

JPG_80_H26 18.06 1.370 7.66 0.99 0.0274 0.130 16.15 0.361

Sample Vol Moist Dry Dens Re(eps) Im(eps) Cond Loss Tan Attn  Ph Vel

(%) (g/cc) (rel) (rel) (mho/m) (dB/m) (rel)
JPG_80_A13_0.1 24.76 1.300 10.37 1.79  0.0493 0173 2494 0.309
JPG_80_A13 0.1_D 5.56 1.300 3.30 0.27 0.0075 0.083 6.77 0.550
JPG_80_A13_0.1_W 42.47 1.300 23.35 3.58 0.0986 0.153 33.28 0.206
JPG_80_A13_0.5 22.13 1.380 10.27 225 0.0619 0.218 31.40 0.310
JPG_80_A13_0.5_D 4.97 1.380 3.79 0.58 0.0159 0.153 1335 0.512
JPG_80_A13_0.5_ W 40.67 1.380 22.41 423 0.1163 0.189 40.02 0.210
JPG 80_A13 1.0 29.27 1.378 12.02 3.15 0.0867 0.262 4056 0.286
JPG_80_A13_1.0_D 6.98 1.378 3.73 0.58 0.0161 0.157 13.59 0.517
JPG_80_A13_1.0_W 40.59 1.378 22.60 547 0.1505 0.242 5140 0.209
JPG_80_H1_0.1 20.66 1.344 8.33 069 0.0190 0.083 10.76 0.346
JPG_80_H1_0.1_D 5.31 1.344 3.26 0.17  0.0048 0.054 435 0554
JPG_80_H1_0.1_W 42.81 1.344 23.34 1.82  0.0501 0.078 16.94 0.207
JPG_80_H1_0.5 26.11 1.434 11.43 235 0.0646 0.205 31.10 0.294
JPG_80_H1 0.5_D 7.36 1.434 4.01 049 0.0136 0.123 11.09 0.499
JPG_80_H1_0.5_ W 40.90 1.434 21.57 3.89 0.1071 0.181 3759 0.215
JPG_80_H1_1.0 37.50 1.684 20.10 6.11  0.1682 0.304 60.70 0.221
JPG_80_H1_1.0_D 9.93 1.684 5.80 1.07 0.0295 0.185 19.93 '0.414
JPG_80_H1_1.0_W 34.10 1.684 16.21 4.80 0.1321 0.296 53.08 0.246
JPG_80_H13_0.1 13.78 1.232 4.56 0.37 0.0100 0.080 769 0.468
JPG_80_H13_0.1_D 7.95 1.232 2.98 0.17  0.0047 0.057 443 0.579
JPG_80_H13_0.1_W 4420 1.232 24,97 1.89 0.0522 0.076 17.06 0.200
JPG_80_H13_0.5 23.61 1.405 9.51 1.73  0.0477 0.182 2518 0.323
JPG_80_H13_0.5_D 6.81 1.405 3.70 045 0.0123 0.121 1046 0.519
JPG_80_H13_0.5_W 38.19 1.405 19.71 3.07 0.0845 0.156 31.05 0.225
JPG 80_H13 1.0 33.72 1.693 18.38 7.67 0.2111 0417 7892 0.229
JPG_80_H13_1.0_D 10.49 1.693 6.36 1.48 0.0407 0.233 2624 0.394
JPG_80_H13_1.0_wW 33.54 1.693 16.45 6.58 0.1811 0.400 7167 0.242

0.1

JPG_80_H26_0.1_D 462 1.370 3.23 0.24 0.0066 0.074 599 0.556
JPG_80_H26_0.1_W 41.04 1.370 22.54 2.57 0.0707 0.114 2432 0.210
JPG_80_H26_| _0.5 15.31 1.218 5.31 0.73  0.0202 0.138 1431 0.433
JPG_80_H26_0.5_D 6.32 1.218 3.19 0.32 0.0089 0.101 8.14 0.559
JPG_80_H26_0.5 W 56.01 1.218 30.07 3.68 0.1012 0.122 30.14 0.182
JPG_80_H26_1.0 21.91 1.440 8.87 1.95 0.0535 0.219 2924 0.334
JPG_80_H26_1.0_D 6.11 1.440 3.69 0.50 0.0138 0136 1170 0.520
JPG_80_H26_1.0_W 33.92 1.440 16.48 3.23 0.0890 0.196 3569 0.245
JPG_80_013_0.1 9.17 1.143 3.70 0.25 0.0069 0.067 583 0.519
JPG_80_013_0.1_D 3.20 1.143 2.47 0.10  0.0028 0.041 293 0.636
JPG_80_013_0.1_W §3.65 1.143 29.42 1.73  0.0475 0.059 1433 0.184
JPG_80_013_0.5 17.78 1.452 818  1.51 0.0416 0.185 2367 0.348
JPG_ _80_013_0.5_D 4.31 1.452 3.47 0.40 0.0109 0.114 9.57 0.536
JPG_80_013_0.5_W 37.29 1.452 20.71 3.09 0.0850 0.149 3045 0.219
JPG 80_013 1.0 20.61 1.404 8.62 1.78  0.0490 0.207 27.15 0.339
JPG_80_013_1.0_D 6.26 1.404 3.91 046 0.0128 0.119 1054 0.505
JPG_80_013_1.0_W 41.90 1.404 23.35 4.24 0.1168 0.182 39.39 0.206
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Jefferson Proving Ground , Phase IV
Properties at 495 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 495 MHz , Al Depths
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Jefferson Proving Ground , Phase |V

Properties at 495 MHz , Al Depths
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Jefferson Proving Ground , Phase IV
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Jefferson Proving Ground , Phase IV
Properties at 495 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 495 MHz , All Depths

40 Acre Site

o 80 Acre Site

- ]
0)0.4E

20 30 40 50

Volumetric Moisture

C70

Appendix C Laboratory Dielectric Soil Properties: 40- and 80-acre Sites

67



.68

JPG, Phase IV, 40 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 495 MHz by Depth

e 10cm o 50cm A'1OOcm
............. S & o
1 SUT . | = Q,;,"""Eif;ﬁ"":"; :'B{é Eé@g """ 3-3" """ T
10 20 30 40 50 60

Volumetric Moisture

C72

Appendix C Laboratory Dielectric Soil Properties: 40- and 80-acre Sites

69



-70

JPG, Ph_ase IV, 40 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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Imaginary Constant

JPG, Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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JPG , Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 495 MHz by Depth
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JPG, Phase IV, 40 Acre Site , 1015 MHz

Sample Vol Moist Dry Dens Re(eps) Im(eps) Cond Loss Tan Attn  Ph Vel

(%) (g/cc) (rel) (rel) (mho/m) (dB/m) (rel)
JPG_40_C1_0.1 11.31 1.197 4.57 0.29 0.0163 0.063 12.50 0.468
JPG_40_C1_0.1_D 3.17 1.197 2.59 0.10  0.0058 0.039 586 0621
JPG_40_C1_0.1_W 47.20 1.197 2719 208 0.1173 0.076 36.76 0.192
JPG_40_C1_0.5 25.21 1.401 10.71 1.31 0.0741 0.123 36.97 0.305
JPG_40_C1_0.5 D 4.81 1.401 3.47 0.30 0.0169 0.087 14.86 0.537
JPG_40_C1_0.5 W 39.52 1.401 20.43 246 0.1389 0.121  50.18 0.221
JPG_40_C1_1.0 26.42 1.512 11.62 1.37 0.0775 0.118 37.11 0.293
JPG_40_C1_1.0.D 5.50 1.512 3.78 0.33 0.0186 0.087 1560 0.514
JPG_40_C1_1.0.W 38.01 1.512 19.97 232 0.1308 0.116 47.80 0.223
JPG_40_C7_0.1 18.06 1.421 7.43 0.50 0.0284 0.068 17.04 0.367
JPG_40_C7_0.1_D 4.55 1.421 2.97 0.13  0.0071 0.042 6.71  0.580
JPG_40_C7_0.1_W 40.69 1.421 21.36 1.53 0.0861 0.071 3044 0.216
JPG_40_C7_0.5 29.10 1.547 13.68 1.51  0.0852 0.110 37.65 0.270
JPG_40_C7_0.5_D 3.88 1.547 3.50 0.26 0.0147 0.074 1284 0.534
JPG_40_C7_0.5_ W 34.76 1.547 17.15 1.94 0.1098 0.113 43.28 0.241
JPG_40_C7_1.0 27.08 1.634 13.52 1.55 0.0873 0.116 38.79 0.272
JPG_40_C7_1.0.D 5.00 1.634 3.84 032 0.0182 0.084 1517 0.510
JPG_40_C7_1.0_W 31.70 1.634 15.70 1.87 0.1054 0.119 4343 0.252
JPG_40_C13_0.1 14.39 1.359 6.16 046 0.0261 0.075 17.20 0.403
JPG_40_C13_0.1_D 3.13 1.359 2.87 0.12  0.0069 0.042 6.63 0.590
JPG_40_C13_0.1_W 41.40 1.359 21.09 1.51  0.0851 0.072 30.28 0.218
JPG_40_C13_0.5 16.64 1.377 6.15 0.55 0.0310 0.089 20.45 0.403
JPG_40_C13_0.5_ W 45.31 1.377 24.76 237 0.1338 0.096 43.95 0.201
JPG_40_C13_1.0 22.51 1.524 10.33 1.30 0.0734 0.126 37.27 0.311
JPG_40_C13_1.0_D 3.70 1.524 3.52 0.30 0.0167 0.084 1453 0.532
JPG_40_C13_1.0_W 32.73 1.524 16.10 195 0.1101 0.121 44.81 0.249
JPG__40_G1_0 1 16.84 1.126 5.31 0.35 0.0200 0.067 14.21 0434
JPG_40_G1_0.1_D 5.28 1.126 2.51 0.11  0.0060 0.042 6.14 0.631
JPG_40_G1_0.1_W 53.37 1.126 29.16 229 0.1294 0.079 3917 0.185
JPG_40_G1_0.5 25.14 1.440 9.54 0.94 0.0530 0.098 28.03 0.323
JPG_40_G1_0.5_D 5.14 1.440 328 ° 027 0.0152 0.082 13.72 0.552
JPG_40_G1_0.5 W 41.22 1.440 22.72 232  0.1307 0.102 4479 0.210
JPG_40_G1_1.0 30.59 1.621 16.12 1.81  0.1020 0.112 41.49 0.249
JPG_40_G1_1.0.D 4.69 1.621 3.96 0.36  0.0203 0.091 16.67 0.502
JPG_40_G1_1.0_W 32.80 1.621 15.92 1.75 0.0986 0.110 40.38 0.250
JPG_40_G7_0.1 15.35 1.339 6.25 040 0.0226 0.064 14.79 0.400
JPG_40_G7_0.1_D 3.13 1.339 2.78 0.10  0.0059 0.038 578 0.600
JPG_40_G7_0.1_W 45.54 1.339 24 .49 1.81  0.1021 0.074 33.73 0.202
JPG_40_G7_0.5 21.87 1.494 10.51 0.99 0.0559 0.094 28.17 0.308
JPG_40_G7_0.5_ D 3.32 1.494 3.37 0.22 0.0123 0.065 10.94 0.545
JPG_40_G7_0.5_ W 36.30 1.494 19.53 1.81  0.1024 0.093 37.87 0.226
JPG_40_G7_1.0 27.28 1.599 13.17 1.68  0.0949 0.128 4271 0.275
JPG_40_G7_1.0.D 5.38 1.699 3.86 0.35 0.0195 0.090 16.26 0.509
JPG_40_G7_1.0.W 38.51 1.599 18.86 240 0.1352 0.127 50.83 0.230
JPG_40_G13_0.1 13.96 1.271 5.30 0.33 0.0184 0.062 13.08 0.434
JPG_40_G13_0.1_D 3.01 1.271 2.59 0.12  0.0066 0.045 6.74 0.621
JPG_40_G13_0.1_W 44.65 1.271 23.73 175 0.0990 0.074 3324 0205
JPG_40_G13_0.5 22.39 1.560 10.73 1.08  0.0607 0.100 30.27 2305
JPG_40_G13_0.5_D 3.63 1.560 3.58 0.26 0.0147 0.073 12.68 0.528

JPG_40_G13_0.5 W 35.29 1.560 17.94 1.78  0.1003 0.099 38.68 90236
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JPG_40_G13_1.0
JPG_40_G13_1.0_
JPG_40_G13_1.0
JPG_40_K1_0.1
JPG_40_K1_0.1_D
JPG_40_K1_0.1_W
JPG_40_K1_0.5
JPG_40_K1_0.5D
JPG_40_K1_0.5_W
JPG_40_K7_0.1
JPG_40_K7_0.1_D
JPG_40_K7_0.1_W
JPG_40_K7 0.5
JPG_40_K7_0.5 D
JPG_40_K7 0.5 W
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
JPG_40_K13_0.
0.
0.
1
1.
1.

D
W

JPG_40_K13_
JPG 40 K13_
JPG_40_K13_
JPG_40_K13_
JPG_40_K13_
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27.49
4.39
32.60
16.49
4.65
43.58
32.12
6.28
36.18
13.85
4.83
48.72
26.59
5.78
38.67
13.33
4.62
52.08
20.73
4.76
48.65
25.73
5.42
40.31

1.673
1.673
1.673
1.217
1.217
1.217
1.467
1.467
1.467
1.228
1.228
1.228
1.447
1.447
1.447
1.185
1.185
1.185
1.266
1.266
1.266
1.516
1.516
1.616

14.24
4.01
16.46
6.10
2.74
22.50
15.42
3.85
17.13
5.48
2.99
26.72
11.77
3.86
20.48
4.27
2.49
27.36
6.74
2.91
26.40
11.24
3.77
20.07
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1.75
0.36
2.00
0.41
0.12
1.67
2.18
0.40
2.33
0.55
0.19
2.56
1.68
0.41
2.87
0.28
0.11
2.16
0.65
0.20
2.79
1.44
0.32
2.75

0.0989
0.0205
0.1129
0.0231
0.0069
0.0944
0.1230
0.0225
0.1318
0.0311
0.0110
0.1443
0.0048
0.0229
0.1620
0.0161
0.0062
0.1219
0.0368
0.0111
0.1576
0.0810
0.0178
0.1552

0.123
0.091
0.122
0.067
0.045
0.074
0.141
0.101
0.136
0.101
0.065
0.096
0.143
0.105
0.140
0.067
0.044
0.079
0.097
0.068
0.106
0.128
0.084
0.137

42.80
16.74
4542
15.29

6.85
32.55
51.11
18.53
51.95
21.73
10.39
45.62
45.07
19.05
§8.42
12.72

6.44
38.08
23.17
10.68
50.10
39.43
15.01
56.53

0.265
0.499
0.246
0.405
0.604
0.211
0.254
0.503
0.241
0.427
0.578
0.193
0.291
0.508
0.220
0.484
0.633
0.191
0.385
0.586
0.194
0.298

-0.515

0.223
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JPG , Phase IV, 80 Acre Site , 1015 MHz

Sample

JPG_80_A13_0.1

JPG_80_A13_0.1_D
JPG_80_A13_0.1_W

JPG_80_A13_0.5
JPG_80_A13_0.5_
JPG_80_A13_0.5_
JPG_80_A13_1.0
JPG_80_A13_1.0_
JPG_80_A13_1.0_
JPG_80_H1_0.1

JPG_80_H1_0.1_D

JPG_80_H1_0.1_W

JPG_80_H1_0.5
JPG_80_H1_0.5_D

JPG_80_H1_0.5_W

JPG_80_H1_1.0
JPG_80_H1_1.0_D

JPG_80_H1_1.0_W

JPG_80_H13_0.1
JPG_80_H13_0.1_
JPG_80_H13_0.1_
JPG_80_H13_| 0.5
JPG_80_H13_0.5_
JPG_80_H13_0.5_
JPG_80_H13_1.0
JPG_80_H13_1.0_
JPG_80_H13_1.0_
JPG_80_H26_0.1
JPG_80_H26_0.1_|
JPG_80_H26_0.1_
JPG_80_H26_ 05
JPG_80_H26_0.5_
JPG_80_H26_0.5_
JPG_80_H26_1.0
JPG_80_H26_1.0_
JPG_80_H26_1.0_
1
1
1_
5
5_|
5_
.0
0_|
.0_

JPG 80 013_ _0.
JPG_80_013_0.
JPG_80_013_0.
JPG_80_013_0.
JPG_80_013_0.
JPG_80_0O13_1
JPG_80_013_1.
JPG_80_013_1

D
w
D
w

(%)

24.76
5.56
42.47
22.13
4.97
40.67
29.27
6.98
40.59
20.66
5.31
42.81
26.11
7.36
40.90
37.50
9.93
34.10
13.78
7.95
44.20
23.61
6.81
38.19
33.72
10.49
33.54
18.06
4.62
41.04
15.31
6.32
56.01
21.91
6.11
33.92
8.17
3.20
53.65
17.78
4.31
37.28
20.61
6.26
41.90

(g/cc)

1.300
1.300
1.300
1.380
1.380
1.380
1.378
1.378
1.378
1.344
1.344
1.344
1.434
1.434
1.434
1.684
1.684
1.684
1.232
1.232
1.232
1.405
1.405
1.405
1.693
1.693
1.693
1.370
1.370
1.370
1.218
1.218
1.218
1.440
1.440
1.440
1.143
1.143
1.143
1.452
1.452
1.452
1.404
1.404
1.404

Vol Moist Dry Dens Re(eps)

(rel)

10.07
3.23
22.64
9.82
3.61
21.46
11.28
3.55
21.62
8.21
3.21
22.69
10.77
3.87
20.89
19.11
5.50
15.43
4.47
2.94
24.54
9.21
3.58
19.09
16.97
5.98
15.20
7.45
3.18
21.86
5.14
3.09
28.82
8.46
3.56
16.17
3.70
2.46
29.28
7.89
3.37
20.34
8.27
3.75
22.54

Im(eps)

(rel)

1.29
0.24
2.85
1.3
0.43
3.12
2.15
0.41
3.73
0.63
0.17
1.79
1.83
0.37
2.76
3.96
0.79
3.14
0.31
0.15
1.92
1.23
0.35
2.31
4.72
1.04
4.10
0.76
0.21
2.18
0.53
0.27
2.90
1.39
0.38
2.37
0.21
0.09
2.22
1.02
0.30
2.48
1.20
0.35
3.18
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Cond Loss Tan

(mho/m)

0.0729
0.0134
0.1610
0.0861
0.0240
0.1758
0.1214
0.0231
0.2103
0.0357
0.0096
0.1009
0.1032
0.0208
0.1559
0.2237
0.0448
0.1772
0.0174
0.0085
0.1086
0.0695
0.0197
0.1301
0.2665
0.0590
0.2315
0.0430
0.0119
0.1229
0.0297
0.0150
0.1639
0.0782
0.0215
0.1340
0.0118
0.0051
0.1251
0.0578
0.0169
0.1402
0.0677
0.0199
0.1792

0.128
0.073
0.126
0.155
0.118
0.145
0.191
0.115
0.172
0.077
0.053
0.079
0.170
0.095
0.132
0.207
0.145
0.203
0.069
0.051
0.078
0.134
0.097
0.121
0.278
0.174
0.270
0.102
0.066
0.100
0.102
0.086
0.101
0.164
0.107
0.147
0.056
0.037
0.076
0.130
0.089
0.122
0.145
0.094
0.141

Attn
(dB/m)

37.51
12.15
55.24
44 .81
20.65
61.93
58.84
19.99
73.70
20.37
8.73
34.63
51.27
17.31
55.68
83.26
31.20
73.39
13.46
8.11
35.85
37.38
16.97
48.62
104.84
39.26
96.24
25.71
10.88
42.95
21.40
13.92
49.89
43.83
18.62
54.36
9.99

5.31.

37.80
33.57
15.06
50.75
38.39
16.77
61.61

Ph Vel
(rel)

0.315
0.556
0.210
0.318
0.526
0.215
0.296
0.530
0.214
0.349
0.558
0.210
0.304
0.508
0.218
0.228

0.425
0.253
0.473
0.583
0.202
0.329
0.528
0.228
0.241
0.407
0.254
0.366
0.561
0.214
0.440
0.569
0.186
0.343
0.530
0.248
0.519
0.637
0.185
0.355
0.544
0.221
0.347
0.516
0.210
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Jefferson Proving Ground , Phase IV
Properties at 1015 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 1015 MHz , All Depths
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Jefferson Proving Ground , Phase IV
Properties at 1015 MHz , All Depths
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Jefferson Proving Ground , Phase IV

Properties at 1015 MHz , All Depths
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JPG, Phase IV, 40 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
Properties at 1015 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 1015 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 40 Acre Test Site
- Properties at 1015 MHz by Depth
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JPG , Phase IV, 40 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site
Properties at 1015 MHz by Depth
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JPG, Phase IV, 80 Acre Test Site

Properties at 1015 MHz by Depth
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Appendix D
Soil Gradation Curves:
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Appendix D Soil Gradation Curves: 1-hectare Site
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Figure H2. GPR record, Line 60E {ON to 100N}, 50MHz, 1-hectare site
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